MON Price: $0.018696 (-2.10%)

Contract

0xe5980273Ea70Aa2f7982aaBC90f607185fBad50F

Overview

MON Balance

Monad Chain LogoMonad Chain LogoMonad Chain Logo0 MON

MON Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

1 Internal Transaction found.

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block From To
377197832025-11-24 16:12:5461 days ago1764000774  Contract Creation0 MON
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0xCa51AD6a...C1FE1Ff09
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
BoundedPriceFeed

Compiler Version
v0.8.23+commit.f704f362

Optimization Enabled:
Yes with 1000 runs

Other Settings:
shanghai EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

// SPDX-License-Identifier: GPL-2.0-or-later
// Gearbox Protocol. Generalized leverage for DeFi protocols
// (c) Gearbox Foundation, 2025.
pragma solidity ^0.8.23;

import {LibString} from "@solady/utils/LibString.sol";
import {IncorrectParameterException} from "@gearbox-protocol/core-v3/contracts/interfaces/IExceptions.sol";
import {IPriceFeed} from "@gearbox-protocol/core-v3/contracts/interfaces/base/IPriceFeed.sol";
import {SanityCheckTrait} from "@gearbox-protocol/core-v3/contracts/traits/SanityCheckTrait.sol";
import {PriceFeedValidationTrait} from "../traits/PriceFeedValidationTrait.sol";

/// @title Bounded price feed
/// @notice Can be used to provide upper-bounded answers for assets that are
///         expected to have the price in a certain range, e.g. stablecoins
contract BoundedPriceFeed is IPriceFeed, SanityCheckTrait, PriceFeedValidationTrait {
    using LibString for string;
    using LibString for bytes32;

    uint256 public constant override version = 3_11;
    bytes32 public constant override contractType = "PRICE_FEED::BOUNDED";

    uint8 public constant override decimals = 8; // U:[BPF-2]
    bool public constant override skipPriceCheck = true; // U:[BPF-2]

    /// @notice Underlying price feed
    address public immutable priceFeed;
    uint32 public immutable stalenessPeriod;
    bool public immutable skipCheck;

    /// @notice Upper bound for underlying price feed answers
    int256 public immutable upperBound;

    /// @dev Price feed description ticker
    bytes32 internal _descriptionTicker;

    /// @notice Constructor
    /// @param _priceFeed Underlying price feed
    /// @param _stalenessPeriod Underlying price feed staleness period, must be non-zero unless it performs own checks
    /// @param _upperBound Upper bound for underlying price feed answers
    /// @param descriptionTicker Ticker to use in price feed description
    constructor(address _priceFeed, uint32 _stalenessPeriod, int256 _upperBound, string memory descriptionTicker)
        nonZeroAddress(_priceFeed) // U:[BPF-1]
    {
        if (_upperBound <= 0) revert IncorrectParameterException(); // U:[BPF-1]
        priceFeed = _priceFeed; // U:[BPF-1]
        stalenessPeriod = _stalenessPeriod; // U:[BPF-1]
        skipCheck = _validatePriceFeedMetadata(priceFeed, stalenessPeriod); // U:[BPF-1]
        upperBound = _upperBound; // U:[BPF-1]
        _descriptionTicker = descriptionTicker.toSmallString();
    }

    /// @notice Price feed description
    function description() external view override returns (string memory) {
        return string.concat(_descriptionTicker.fromSmallString(), " bounded price feed"); // U:[BPF-2]
    }

    /// @notice Serialized price feed parameters
    function serialize() external view override returns (bytes memory) {
        return abi.encode(upperBound);
    }

    /// @notice Returns the upper-bounded USD price of the token
    function latestRoundData() external view override returns (uint80, int256, uint256, uint256, uint80) {
        (int256 answer, uint256 updatedAt) = _getValidatedPrice(priceFeed, stalenessPeriod, skipCheck); // U:[BPF-3]
        return (0, _upperBoundValue(answer), 0, updatedAt, 0); // U:[BPF-3]
    }

    /// @dev Upper-bounds given value
    function _upperBoundValue(int256 value) internal view returns (int256) {
        return (value > upperBound) ? upperBound : value;
    }
}

File 2 of 9 : LibString.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Library for converting numbers into strings and other string operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
///
/// @dev Note:
/// For performance and bytecode compactness, most of the string operations are restricted to
/// byte strings (7-bit ASCII), except where otherwise specified.
/// Usage of byte string operations on charsets with runes spanning two or more bytes
/// can lead to undefined behavior.
library LibString {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                        CUSTOM ERRORS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The length of the output is too small to contain all the hex digits.
    error HexLengthInsufficient();

    /// @dev The length of the string is more than 32 bytes.
    error TooBigForSmallString();

    /// @dev The input string must be a 7-bit ASCII.
    error StringNot7BitASCII();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The constant returned when the `search` is not found in the string.
    uint256 internal constant NOT_FOUND = type(uint256).max;

    /// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.
    uint128 internal constant ALPHANUMERIC_7_BIT_ASCII = 0x7fffffe07fffffe03ff000000000000;

    /// @dev Lookup for 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.
    uint128 internal constant LETTERS_7_BIT_ASCII = 0x7fffffe07fffffe0000000000000000;

    /// @dev Lookup for 'abcdefghijklmnopqrstuvwxyz'.
    uint128 internal constant LOWERCASE_7_BIT_ASCII = 0x7fffffe000000000000000000000000;

    /// @dev Lookup for 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
    uint128 internal constant UPPERCASE_7_BIT_ASCII = 0x7fffffe0000000000000000;

    /// @dev Lookup for '0123456789'.
    uint128 internal constant DIGITS_7_BIT_ASCII = 0x3ff000000000000;

    /// @dev Lookup for '0123456789abcdefABCDEF'.
    uint128 internal constant HEXDIGITS_7_BIT_ASCII = 0x7e0000007e03ff000000000000;

    /// @dev Lookup for '01234567'.
    uint128 internal constant OCTDIGITS_7_BIT_ASCII = 0xff000000000000;

    /// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r\x0b\x0c'.
    uint128 internal constant PRINTABLE_7_BIT_ASCII = 0x7fffffffffffffffffffffff00003e00;

    /// @dev Lookup for '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'.
    uint128 internal constant PUNCTUATION_7_BIT_ASCII = 0x78000001f8000001fc00fffe00000000;

    /// @dev Lookup for ' \t\n\r\x0b\x0c'.
    uint128 internal constant WHITESPACE_7_BIT_ASCII = 0x100003e00;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     DECIMAL OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the base 10 decimal representation of `value`.
    function toString(uint256 value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
            // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
            // We will need 1 word for the trailing zeros padding, 1 word for the length,
            // and 3 words for a maximum of 78 digits.
            str := add(mload(0x40), 0x80)
            // Update the free memory pointer to allocate.
            mstore(0x40, add(str, 0x20))
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end of the memory to calculate the length later.
            let end := str

            let w := not(0) // Tsk.
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let temp := value } 1 {} {
                str := add(str, w) // `sub(str, 1)`.
                // Write the character to the pointer.
                // The ASCII index of the '0' character is 48.
                mstore8(str, add(48, mod(temp, 10)))
                // Keep dividing `temp` until zero.
                temp := div(temp, 10)
                if iszero(temp) { break }
            }

            let length := sub(end, str)
            // Move the pointer 32 bytes leftwards to make room for the length.
            str := sub(str, 0x20)
            // Store the length.
            mstore(str, length)
        }
    }

    /// @dev Returns the base 10 decimal representation of `value`.
    function toString(int256 value) internal pure returns (string memory str) {
        if (value >= 0) {
            return toString(uint256(value));
        }
        unchecked {
            str = toString(~uint256(value) + 1);
        }
        /// @solidity memory-safe-assembly
        assembly {
            // We still have some spare memory space on the left,
            // as we have allocated 3 words (96 bytes) for up to 78 digits.
            let length := mload(str) // Load the string length.
            mstore(str, 0x2d) // Store the '-' character.
            str := sub(str, 1) // Move back the string pointer by a byte.
            mstore(str, add(length, 1)) // Update the string length.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   HEXADECIMAL OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the hexadecimal representation of `value`,
    /// left-padded to an input length of `length` bytes.
    /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
    /// giving a total length of `length * 2 + 2` bytes.
    /// Reverts if `length` is too small for the output to contain all the digits.
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value, length);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`,
    /// left-padded to an input length of `length` bytes.
    /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
    /// giving a total length of `length * 2` bytes.
    /// Reverts if `length` is too small for the output to contain all the digits.
    function toHexStringNoPrefix(uint256 value, uint256 length)
        internal
        pure
        returns (string memory str)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
            // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
            // We add 0x20 to the total and round down to a multiple of 0x20.
            // (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
            str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f)))
            // Allocate the memory.
            mstore(0x40, add(str, 0x20))
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end to calculate the length later.
            let end := str
            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            let start := sub(str, add(length, length))
            let w := not(1) // Tsk.
            let temp := value
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for {} 1 {} {
                str := add(str, w) // `sub(str, 2)`.
                mstore8(add(str, 1), mload(and(temp, 15)))
                mstore8(str, mload(and(shr(4, temp), 15)))
                temp := shr(8, temp)
                if iszero(xor(str, start)) { break }
            }

            if temp {
                mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`.
                revert(0x1c, 0x04)
            }

            // Compute the string's length.
            let strLength := sub(end, str)
            // Move the pointer and write the length.
            str := sub(str, 0x20)
            mstore(str, strLength)
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
    /// As address are 20 bytes long, the output will left-padded to have
    /// a length of `20 * 2 + 2` bytes.
    function toHexString(uint256 value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x".
    /// The output excludes leading "0" from the `toHexString` output.
    /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
    function toMinimalHexString(uint256 value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(add(str, o), 0x3078) // Write the "0x" prefix, accounting for leading zero.
            str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero.
            mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output excludes leading "0" from the `toHexStringNoPrefix` output.
    /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
    function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
            let strLength := mload(str) // Get the length.
            str := add(str, o) // Move the pointer, accounting for leading zero.
            mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is encoded using 2 hexadecimal digits per byte.
    /// As address are 20 bytes long, the output will left-padded to have
    /// a length of `20 * 2` bytes.
    function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
            // 0x02 bytes for the prefix, and 0x40 bytes for the digits.
            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
            str := add(mload(0x40), 0x80)
            // Allocate the memory.
            mstore(0x40, add(str, 0x20))
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end to calculate the length later.
            let end := str
            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            let w := not(1) // Tsk.
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let temp := value } 1 {} {
                str := add(str, w) // `sub(str, 2)`.
                mstore8(add(str, 1), mload(and(temp, 15)))
                mstore8(str, mload(and(shr(4, temp), 15)))
                temp := shr(8, temp)
                if iszero(temp) { break }
            }

            // Compute the string's length.
            let strLength := sub(end, str)
            // Move the pointer and write the length.
            str := sub(str, 0x20)
            mstore(str, strLength)
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
    /// and the alphabets are capitalized conditionally according to
    /// https://eips.ethereum.org/EIPS/eip-55
    function toHexStringChecksummed(address value) internal pure returns (string memory str) {
        str = toHexString(value);
        /// @solidity memory-safe-assembly
        assembly {
            let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
            let o := add(str, 0x22)
            let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
            let t := shl(240, 136) // `0b10001000 << 240`
            for { let i := 0 } 1 {} {
                mstore(add(i, i), mul(t, byte(i, hashed)))
                i := add(i, 1)
                if eq(i, 20) { break }
            }
            mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
            o := add(o, 0x20)
            mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
    function toHexString(address value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is encoded using 2 hexadecimal digits per byte.
    function toHexStringNoPrefix(address value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            str := mload(0x40)

            // Allocate the memory.
            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
            // 0x02 bytes for the prefix, and 0x28 bytes for the digits.
            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
            mstore(0x40, add(str, 0x80))

            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            str := add(str, 2)
            mstore(str, 40)

            let o := add(str, 0x20)
            mstore(add(o, 40), 0)

            value := shl(96, value)

            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let i := 0 } 1 {} {
                let p := add(o, add(i, i))
                let temp := byte(i, value)
                mstore8(add(p, 1), mload(and(temp, 15)))
                mstore8(p, mload(shr(4, temp)))
                i := add(i, 1)
                if eq(i, 20) { break }
            }
        }
    }

    /// @dev Returns the hex encoded string from the raw bytes.
    /// The output is encoded using 2 hexadecimal digits per byte.
    function toHexString(bytes memory raw) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(raw);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hex encoded string from the raw bytes.
    /// The output is encoded using 2 hexadecimal digits per byte.
    function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            let length := mload(raw)
            str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
            mstore(str, add(length, length)) // Store the length of the output.

            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            let o := add(str, 0x20)
            let end := add(raw, length)

            for {} iszero(eq(raw, end)) {} {
                raw := add(raw, 1)
                mstore8(add(o, 1), mload(and(mload(raw), 15)))
                mstore8(o, mload(and(shr(4, mload(raw)), 15)))
                o := add(o, 2)
            }
            mstore(o, 0) // Zeroize the slot after the string.
            mstore(0x40, add(o, 0x20)) // Allocate the memory.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RUNE STRING OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the number of UTF characters in the string.
    function runeCount(string memory s) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            if mload(s) {
                mstore(0x00, div(not(0), 255))
                mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
                let o := add(s, 0x20)
                let end := add(o, mload(s))
                for { result := 1 } 1 { result := add(result, 1) } {
                    o := add(o, byte(0, mload(shr(250, mload(o)))))
                    if iszero(lt(o, end)) { break }
                }
            }
        }
    }

    /// @dev Returns if this string is a 7-bit ASCII string.
    /// (i.e. all characters codes are in [0..127])
    function is7BitASCII(string memory s) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            let mask := shl(7, div(not(0), 255))
            result := 1
            let n := mload(s)
            if n {
                let o := add(s, 0x20)
                let end := add(o, n)
                let last := mload(end)
                mstore(end, 0)
                for {} 1 {} {
                    if and(mask, mload(o)) {
                        result := 0
                        break
                    }
                    o := add(o, 0x20)
                    if iszero(lt(o, end)) { break }
                }
                mstore(end, last)
            }
        }
    }

    /// @dev Returns if this string is a 7-bit ASCII string,
    /// AND all characters are in the `allowed` lookup.
    /// Note: If `s` is empty, returns true regardless of `allowed`.
    function is7BitASCII(string memory s, uint128 allowed) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := 1
            if mload(s) {
                let allowed_ := shr(128, shl(128, allowed))
                let o := add(s, 0x20)
                let end := add(o, mload(s))
                for {} 1 {} {
                    result := and(result, shr(byte(0, mload(o)), allowed_))
                    o := add(o, 1)
                    if iszero(and(result, lt(o, end))) { break }
                }
            }
        }
    }

    /// @dev Converts the bytes in the 7-bit ASCII string `s` to
    /// an allowed lookup for use in `is7BitASCII(s, allowed)`.
    /// To save runtime gas, you can cache the result in an immutable variable.
    function to7BitASCIIAllowedLookup(string memory s) internal pure returns (uint128 result) {
        /// @solidity memory-safe-assembly
        assembly {
            if mload(s) {
                let o := add(s, 0x20)
                let end := add(o, mload(s))
                for {} 1 {} {
                    result := or(result, shl(byte(0, mload(o)), 1))
                    o := add(o, 1)
                    if iszero(lt(o, end)) { break }
                }
                if shr(128, result) {
                    mstore(0x00, 0xc9807e0d) // `StringNot7BitASCII()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   BYTE STRING OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // For performance and bytecode compactness, byte string operations are restricted
    // to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets.
    // Usage of byte string operations on charsets with runes spanning two or more bytes
    // can lead to undefined behavior.

    /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`.
    function replace(string memory subject, string memory search, string memory replacement)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            let searchLength := mload(search)
            let replacementLength := mload(replacement)

            subject := add(subject, 0x20)
            search := add(search, 0x20)
            replacement := add(replacement, 0x20)
            result := add(mload(0x40), 0x20)

            let subjectEnd := add(subject, subjectLength)
            if iszero(gt(searchLength, subjectLength)) {
                let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1)
                let h := 0
                if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                let s := mload(search)
                for {} 1 {} {
                    let t := mload(subject)
                    // Whether the first `searchLength % 32` bytes of
                    // `subject` and `search` matches.
                    if iszero(shr(m, xor(t, s))) {
                        if h {
                            if iszero(eq(keccak256(subject, searchLength), h)) {
                                mstore(result, t)
                                result := add(result, 1)
                                subject := add(subject, 1)
                                if iszero(lt(subject, subjectSearchEnd)) { break }
                                continue
                            }
                        }
                        // Copy the `replacement` one word at a time.
                        for { let o := 0 } 1 {} {
                            mstore(add(result, o), mload(add(replacement, o)))
                            o := add(o, 0x20)
                            if iszero(lt(o, replacementLength)) { break }
                        }
                        result := add(result, replacementLength)
                        subject := add(subject, searchLength)
                        if searchLength {
                            if iszero(lt(subject, subjectSearchEnd)) { break }
                            continue
                        }
                    }
                    mstore(result, t)
                    result := add(result, 1)
                    subject := add(subject, 1)
                    if iszero(lt(subject, subjectSearchEnd)) { break }
                }
            }

            let resultRemainder := result
            result := add(mload(0x40), 0x20)
            let k := add(sub(resultRemainder, result), sub(subjectEnd, subject))
            // Copy the rest of the string one word at a time.
            for {} lt(subject, subjectEnd) {} {
                mstore(resultRemainder, mload(subject))
                resultRemainder := add(resultRemainder, 0x20)
                subject := add(subject, 0x20)
            }
            result := sub(result, 0x20)
            let last := add(add(result, 0x20), k) // Zeroize the slot after the string.
            mstore(last, 0)
            mstore(0x40, add(last, 0x20)) // Allocate the memory.
            mstore(result, k) // Store the length.
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from left to right, starting from `from`.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function indexOf(string memory subject, string memory search, uint256 from)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            for { let subjectLength := mload(subject) } 1 {} {
                if iszero(mload(search)) {
                    if iszero(gt(from, subjectLength)) {
                        result := from
                        break
                    }
                    result := subjectLength
                    break
                }
                let searchLength := mload(search)
                let subjectStart := add(subject, 0x20)

                result := not(0) // Initialize to `NOT_FOUND`.

                subject := add(subjectStart, from)
                let end := add(sub(add(subjectStart, subjectLength), searchLength), 1)

                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                let s := mload(add(search, 0x20))

                if iszero(and(lt(subject, end), lt(from, subjectLength))) { break }

                if iszero(lt(searchLength, 0x20)) {
                    for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                        if iszero(shr(m, xor(mload(subject), s))) {
                            if eq(keccak256(subject, searchLength), h) {
                                result := sub(subject, subjectStart)
                                break
                            }
                        }
                        subject := add(subject, 1)
                        if iszero(lt(subject, end)) { break }
                    }
                    break
                }
                for {} 1 {} {
                    if iszero(shr(m, xor(mload(subject), s))) {
                        result := sub(subject, subjectStart)
                        break
                    }
                    subject := add(subject, 1)
                    if iszero(lt(subject, end)) { break }
                }
                break
            }
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from left to right.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function indexOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256 result)
    {
        result = indexOf(subject, search, 0);
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from right to left, starting from `from`.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function lastIndexOf(string memory subject, string memory search, uint256 from)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            for {} 1 {} {
                result := not(0) // Initialize to `NOT_FOUND`.
                let searchLength := mload(search)
                if gt(searchLength, mload(subject)) { break }
                let w := result

                let fromMax := sub(mload(subject), searchLength)
                if iszero(gt(fromMax, from)) { from := fromMax }

                let end := add(add(subject, 0x20), w)
                subject := add(add(subject, 0x20), from)
                if iszero(gt(subject, end)) { break }
                // As this function is not too often used,
                // we shall simply use keccak256 for smaller bytecode size.
                for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                    if eq(keccak256(subject, searchLength), h) {
                        result := sub(subject, add(end, 1))
                        break
                    }
                    subject := add(subject, w) // `sub(subject, 1)`.
                    if iszero(gt(subject, end)) { break }
                }
                break
            }
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from right to left.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function lastIndexOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256 result)
    {
        result = lastIndexOf(subject, search, uint256(int256(-1)));
    }

    /// @dev Returns true if `search` is found in `subject`, false otherwise.
    function contains(string memory subject, string memory search) internal pure returns (bool) {
        return indexOf(subject, search) != NOT_FOUND;
    }

    /// @dev Returns whether `subject` starts with `search`.
    function startsWith(string memory subject, string memory search)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let searchLength := mload(search)
            // Just using keccak256 directly is actually cheaper.
            // forgefmt: disable-next-item
            result := and(
                iszero(gt(searchLength, mload(subject))),
                eq(
                    keccak256(add(subject, 0x20), searchLength),
                    keccak256(add(search, 0x20), searchLength)
                )
            )
        }
    }

    /// @dev Returns whether `subject` ends with `search`.
    function endsWith(string memory subject, string memory search)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let searchLength := mload(search)
            let subjectLength := mload(subject)
            // Whether `search` is not longer than `subject`.
            let withinRange := iszero(gt(searchLength, subjectLength))
            // Just using keccak256 directly is actually cheaper.
            // forgefmt: disable-next-item
            result := and(
                withinRange,
                eq(
                    keccak256(
                        // `subject + 0x20 + max(subjectLength - searchLength, 0)`.
                        add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))),
                        searchLength
                    ),
                    keccak256(add(search, 0x20), searchLength)
                )
            )
        }
    }

    /// @dev Returns `subject` repeated `times`.
    function repeat(string memory subject, uint256 times)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            if iszero(or(iszero(times), iszero(subjectLength))) {
                subject := add(subject, 0x20)
                result := mload(0x40)
                let output := add(result, 0x20)
                for {} 1 {} {
                    // Copy the `subject` one word at a time.
                    for { let o := 0 } 1 {} {
                        mstore(add(output, o), mload(add(subject, o)))
                        o := add(o, 0x20)
                        if iszero(lt(o, subjectLength)) { break }
                    }
                    output := add(output, subjectLength)
                    times := sub(times, 1)
                    if iszero(times) { break }
                }
                mstore(output, 0) // Zeroize the slot after the string.
                let resultLength := sub(output, add(result, 0x20))
                mstore(result, resultLength) // Store the length.
                // Allocate the memory.
                mstore(0x40, add(result, add(resultLength, 0x20)))
            }
        }
    }

    /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
    /// `start` and `end` are byte offsets.
    function slice(string memory subject, uint256 start, uint256 end)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            if iszero(gt(subjectLength, end)) { end := subjectLength }
            if iszero(gt(subjectLength, start)) { start := subjectLength }
            if lt(start, end) {
                result := mload(0x40)
                let resultLength := sub(end, start)
                mstore(result, resultLength)
                subject := add(subject, start)
                let w := not(0x1f)
                // Copy the `subject` one word at a time, backwards.
                for { let o := and(add(resultLength, 0x1f), w) } 1 {} {
                    mstore(add(result, o), mload(add(subject, o)))
                    o := add(o, w) // `sub(o, 0x20)`.
                    if iszero(o) { break }
                }
                // Zeroize the slot after the string.
                mstore(add(add(result, 0x20), resultLength), 0)
                // Allocate memory for the length and the bytes,
                // rounded up to a multiple of 32.
                mstore(0x40, add(result, and(add(resultLength, 0x3f), w)))
            }
        }
    }

    /// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
    /// `start` is a byte offset.
    function slice(string memory subject, uint256 start)
        internal
        pure
        returns (string memory result)
    {
        result = slice(subject, start, uint256(int256(-1)));
    }

    /// @dev Returns all the indices of `search` in `subject`.
    /// The indices are byte offsets.
    function indicesOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256[] memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            let searchLength := mload(search)

            if iszero(gt(searchLength, subjectLength)) {
                subject := add(subject, 0x20)
                search := add(search, 0x20)
                result := add(mload(0x40), 0x20)

                let subjectStart := subject
                let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1)
                let h := 0
                if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                let s := mload(search)
                for {} 1 {} {
                    let t := mload(subject)
                    // Whether the first `searchLength % 32` bytes of
                    // `subject` and `search` matches.
                    if iszero(shr(m, xor(t, s))) {
                        if h {
                            if iszero(eq(keccak256(subject, searchLength), h)) {
                                subject := add(subject, 1)
                                if iszero(lt(subject, subjectSearchEnd)) { break }
                                continue
                            }
                        }
                        // Append to `result`.
                        mstore(result, sub(subject, subjectStart))
                        result := add(result, 0x20)
                        // Advance `subject` by `searchLength`.
                        subject := add(subject, searchLength)
                        if searchLength {
                            if iszero(lt(subject, subjectSearchEnd)) { break }
                            continue
                        }
                    }
                    subject := add(subject, 1)
                    if iszero(lt(subject, subjectSearchEnd)) { break }
                }
                let resultEnd := result
                // Assign `result` to the free memory pointer.
                result := mload(0x40)
                // Store the length of `result`.
                mstore(result, shr(5, sub(resultEnd, add(result, 0x20))))
                // Allocate memory for result.
                // We allocate one more word, so this array can be recycled for {split}.
                mstore(0x40, add(resultEnd, 0x20))
            }
        }
    }

    /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
    function split(string memory subject, string memory delimiter)
        internal
        pure
        returns (string[] memory result)
    {
        uint256[] memory indices = indicesOf(subject, delimiter);
        /// @solidity memory-safe-assembly
        assembly {
            let w := not(0x1f)
            let indexPtr := add(indices, 0x20)
            let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
            mstore(add(indicesEnd, w), mload(subject))
            mstore(indices, add(mload(indices), 1))
            let prevIndex := 0
            for {} 1 {} {
                let index := mload(indexPtr)
                mstore(indexPtr, 0x60)
                if iszero(eq(index, prevIndex)) {
                    let element := mload(0x40)
                    let elementLength := sub(index, prevIndex)
                    mstore(element, elementLength)
                    // Copy the `subject` one word at a time, backwards.
                    for { let o := and(add(elementLength, 0x1f), w) } 1 {} {
                        mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
                        o := add(o, w) // `sub(o, 0x20)`.
                        if iszero(o) { break }
                    }
                    // Zeroize the slot after the string.
                    mstore(add(add(element, 0x20), elementLength), 0)
                    // Allocate memory for the length and the bytes,
                    // rounded up to a multiple of 32.
                    mstore(0x40, add(element, and(add(elementLength, 0x3f), w)))
                    // Store the `element` into the array.
                    mstore(indexPtr, element)
                }
                prevIndex := add(index, mload(delimiter))
                indexPtr := add(indexPtr, 0x20)
                if iszero(lt(indexPtr, indicesEnd)) { break }
            }
            result := indices
            if iszero(mload(delimiter)) {
                result := add(indices, 0x20)
                mstore(result, sub(mload(indices), 2))
            }
        }
    }

    /// @dev Returns a concatenated string of `a` and `b`.
    /// Cheaper than `string.concat()` and does not de-align the free memory pointer.
    function concat(string memory a, string memory b)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let w := not(0x1f)
            result := mload(0x40)
            let aLength := mload(a)
            // Copy `a` one word at a time, backwards.
            for { let o := and(add(aLength, 0x20), w) } 1 {} {
                mstore(add(result, o), mload(add(a, o)))
                o := add(o, w) // `sub(o, 0x20)`.
                if iszero(o) { break }
            }
            let bLength := mload(b)
            let output := add(result, aLength)
            // Copy `b` one word at a time, backwards.
            for { let o := and(add(bLength, 0x20), w) } 1 {} {
                mstore(add(output, o), mload(add(b, o)))
                o := add(o, w) // `sub(o, 0x20)`.
                if iszero(o) { break }
            }
            let totalLength := add(aLength, bLength)
            let last := add(add(result, 0x20), totalLength)
            // Zeroize the slot after the string.
            mstore(last, 0)
            // Stores the length.
            mstore(result, totalLength)
            // Allocate memory for the length and the bytes,
            // rounded up to a multiple of 32.
            mstore(0x40, and(add(last, 0x1f), w))
        }
    }

    /// @dev Returns a copy of the string in either lowercase or UPPERCASE.
    /// WARNING! This function is only compatible with 7-bit ASCII strings.
    function toCase(string memory subject, bool toUpper)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let length := mload(subject)
            if length {
                result := add(mload(0x40), 0x20)
                subject := add(subject, 1)
                let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
                let w := not(0)
                for { let o := length } 1 {} {
                    o := add(o, w)
                    let b := and(0xff, mload(add(subject, o)))
                    mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20)))
                    if iszero(o) { break }
                }
                result := mload(0x40)
                mstore(result, length) // Store the length.
                let last := add(add(result, 0x20), length)
                mstore(last, 0) // Zeroize the slot after the string.
                mstore(0x40, add(last, 0x20)) // Allocate the memory.
            }
        }
    }

    /// @dev Returns a string from a small bytes32 string.
    /// `s` must be null-terminated, or behavior will be undefined.
    function fromSmallString(bytes32 s) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(0x40)
            let n := 0
            for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\0'.
            mstore(result, n)
            let o := add(result, 0x20)
            mstore(o, s)
            mstore(add(o, n), 0)
            mstore(0x40, add(result, 0x40))
        }
    }

    /// @dev Returns the small string, with all bytes after the first null byte zeroized.
    function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\0'.
            mstore(0x00, s)
            mstore(result, 0x00)
            result := mload(0x00)
        }
    }

    /// @dev Returns the string as a normalized null-terminated small string.
    function toSmallString(string memory s) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(s)
            if iszero(lt(result, 33)) {
                mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`.
                revert(0x1c, 0x04)
            }
            result := shl(shl(3, sub(32, result)), mload(add(s, result)))
        }
    }

    /// @dev Returns a lowercased copy of the string.
    /// WARNING! This function is only compatible with 7-bit ASCII strings.
    function lower(string memory subject) internal pure returns (string memory result) {
        result = toCase(subject, false);
    }

    /// @dev Returns an UPPERCASED copy of the string.
    /// WARNING! This function is only compatible with 7-bit ASCII strings.
    function upper(string memory subject) internal pure returns (string memory result) {
        result = toCase(subject, true);
    }

    /// @dev Escapes the string to be used within HTML tags.
    function escapeHTML(string memory s) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            let end := add(s, mload(s))
            result := add(mload(0x40), 0x20)
            // Store the bytes of the packed offsets and strides into the scratch space.
            // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
            mstore(0x1f, 0x900094)
            mstore(0x08, 0xc0000000a6ab)
            // Store "&quot;&amp;&#39;&lt;&gt;" into the scratch space.
            mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
            for {} iszero(eq(s, end)) {} {
                s := add(s, 1)
                let c := and(mload(s), 0xff)
                // Not in `["\"","'","&","<",">"]`.
                if iszero(and(shl(c, 1), 0x500000c400000000)) {
                    mstore8(result, c)
                    result := add(result, 1)
                    continue
                }
                let t := shr(248, mload(c))
                mstore(result, mload(and(t, 0x1f)))
                result := add(result, shr(5, t))
            }
            let last := result
            mstore(last, 0) // Zeroize the slot after the string.
            result := mload(0x40)
            mstore(result, sub(last, add(result, 0x20))) // Store the length.
            mstore(0x40, add(last, 0x20)) // Allocate the memory.
        }
    }

    /// @dev Escapes the string to be used within double-quotes in a JSON.
    /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
    function escapeJSON(string memory s, bool addDoubleQuotes)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let end := add(s, mload(s))
            result := add(mload(0x40), 0x20)
            if addDoubleQuotes {
                mstore8(result, 34)
                result := add(1, result)
            }
            // Store "\\u0000" in scratch space.
            // Store "0123456789abcdef" in scratch space.
            // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
            // into the scratch space.
            mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
            // Bitmask for detecting `["\"","\\"]`.
            let e := or(shl(0x22, 1), shl(0x5c, 1))
            for {} iszero(eq(s, end)) {} {
                s := add(s, 1)
                let c := and(mload(s), 0xff)
                if iszero(lt(c, 0x20)) {
                    if iszero(and(shl(c, 1), e)) {
                        // Not in `["\"","\\"]`.
                        mstore8(result, c)
                        result := add(result, 1)
                        continue
                    }
                    mstore8(result, 0x5c) // "\\".
                    mstore8(add(result, 1), c)
                    result := add(result, 2)
                    continue
                }
                if iszero(and(shl(c, 1), 0x3700)) {
                    // Not in `["\b","\t","\n","\f","\d"]`.
                    mstore8(0x1d, mload(shr(4, c))) // Hex value.
                    mstore8(0x1e, mload(and(c, 15))) // Hex value.
                    mstore(result, mload(0x19)) // "\\u00XX".
                    result := add(result, 6)
                    continue
                }
                mstore8(result, 0x5c) // "\\".
                mstore8(add(result, 1), mload(add(c, 8)))
                result := add(result, 2)
            }
            if addDoubleQuotes {
                mstore8(result, 34)
                result := add(1, result)
            }
            let last := result
            mstore(last, 0) // Zeroize the slot after the string.
            result := mload(0x40)
            mstore(result, sub(last, add(result, 0x20))) // Store the length.
            mstore(0x40, add(last, 0x20)) // Allocate the memory.
        }
    }

    /// @dev Escapes the string to be used within double-quotes in a JSON.
    function escapeJSON(string memory s) internal pure returns (string memory result) {
        result = escapeJSON(s, false);
    }

    /// @dev Returns whether `a` equals `b`.
    function eq(string memory a, string memory b) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
        }
    }

    /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string.
    function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            // These should be evaluated on compile time, as far as possible.
            let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
            let x := not(or(m, or(b, add(m, and(b, m)))))
            let r := shl(7, iszero(iszero(shr(128, x))))
            r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
                xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
        }
    }

    /// @dev Packs a single string with its length into a single word.
    /// Returns `bytes32(0)` if the length is zero or greater than 31.
    function packOne(string memory a) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // We don't need to zero right pad the string,
            // since this is our own custom non-standard packing scheme.
            result :=
                mul(
                    // Load the length and the bytes.
                    mload(add(a, 0x1f)),
                    // `length != 0 && length < 32`. Abuses underflow.
                    // Assumes that the length is valid and within the block gas limit.
                    lt(sub(mload(a), 1), 0x1f)
                )
        }
    }

    /// @dev Unpacks a string packed using {packOne}.
    /// Returns the empty string if `packed` is `bytes32(0)`.
    /// If `packed` is not an output of {packOne}, the output behavior is undefined.
    function unpackOne(bytes32 packed) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Grab the free memory pointer.
            result := mload(0x40)
            // Allocate 2 words (1 for the length, 1 for the bytes).
            mstore(0x40, add(result, 0x40))
            // Zeroize the length slot.
            mstore(result, 0)
            // Store the length and bytes.
            mstore(add(result, 0x1f), packed)
            // Right pad with zeroes.
            mstore(add(add(result, 0x20), mload(result)), 0)
        }
    }

    /// @dev Packs two strings with their lengths into a single word.
    /// Returns `bytes32(0)` if combined length is zero or greater than 30.
    function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let aLength := mload(a)
            // We don't need to zero right pad the strings,
            // since this is our own custom non-standard packing scheme.
            result :=
                mul(
                    // Load the length and the bytes of `a` and `b`.
                    or(
                        shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))),
                        mload(sub(add(b, 0x1e), aLength))
                    ),
                    // `totalLength != 0 && totalLength < 31`. Abuses underflow.
                    // Assumes that the lengths are valid and within the block gas limit.
                    lt(sub(add(aLength, mload(b)), 1), 0x1e)
                )
        }
    }

    /// @dev Unpacks strings packed using {packTwo}.
    /// Returns the empty strings if `packed` is `bytes32(0)`.
    /// If `packed` is not an output of {packTwo}, the output behavior is undefined.
    function unpackTwo(bytes32 packed)
        internal
        pure
        returns (string memory resultA, string memory resultB)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Grab the free memory pointer.
            resultA := mload(0x40)
            resultB := add(resultA, 0x40)
            // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
            mstore(0x40, add(resultB, 0x40))
            // Zeroize the length slots.
            mstore(resultA, 0)
            mstore(resultB, 0)
            // Store the lengths and bytes.
            mstore(add(resultA, 0x1f), packed)
            mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
            // Right pad with zeroes.
            mstore(add(add(resultA, 0x20), mload(resultA)), 0)
            mstore(add(add(resultB, 0x20), mload(resultB)), 0)
        }
    }

    /// @dev Directly returns `a` without copying.
    function directReturn(string memory a) internal pure {
        assembly {
            // Assumes that the string does not start from the scratch space.
            let retStart := sub(a, 0x20)
            let retUnpaddedSize := add(mload(a), 0x40)
            // Right pad with zeroes. Just in case the string is produced
            // by a method that doesn't zero right pad.
            mstore(add(retStart, retUnpaddedSize), 0)
            // Store the return offset.
            mstore(retStart, 0x20)
            // End the transaction, returning the string.
            return(retStart, and(not(0x1f), add(0x1f, retUnpaddedSize)))
        }
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
// Gearbox Protocol. Generalized leverage for DeFi protocols
// (c) Gearbox Foundation, 2025.
pragma solidity ^0.8.23;

import {
    AddressIsNotContractException,
    IncorrectParameterException,
    IncorrectPriceException,
    IncorrectPriceFeedException,
    StalePriceException
} from "@gearbox-protocol/core-v3/contracts/interfaces/IExceptions.sol";
import {IPriceFeed} from "@gearbox-protocol/core-v3/contracts/interfaces/base/IPriceFeed.sol";
import {OptionalCall} from "@gearbox-protocol/core-v3/contracts/libraries/OptionalCall.sol";

/// @title Price feed validation trait
abstract contract PriceFeedValidationTrait {
    /// @dev Ensures that price feed's answer is positive and not stale.
    ///      If `skipCheck` is true, only checks that price is non-negative to allow zero price feed to be used.
    function _checkAnswer(int256 price, uint256 updatedAt, uint32 stalenessPeriod, bool skipCheck) internal view {
        if (price < 0 || !skipCheck && price == 0) revert IncorrectPriceException();
        if (!skipCheck && block.timestamp >= updatedAt + stalenessPeriod) revert StalePriceException();
    }

    /// @dev Validates that `priceFeed` is a contract that adheres to Chainlink interface
    /// @dev Reverts if `priceFeed` does not have exactly 8 decimals
    /// @dev Reverts if `stalenessPeriod` is inconsistent with `priceFeed`'s `skipPriceCheck()` flag
    ///      (which is considered to be false if `priceFeed` does not have this function)
    function _validatePriceFeedMetadata(address priceFeed, uint32 stalenessPeriod)
        internal
        view
        returns (bool skipCheck)
    {
        if (priceFeed.code.length == 0) revert AddressIsNotContractException(priceFeed);

        try IPriceFeed(priceFeed).decimals() returns (uint8 _decimals) {
            if (_decimals != 8) revert IncorrectPriceFeedException();
        } catch {
            revert IncorrectPriceFeedException();
        }

        // NOTE: Some external price feeds without `skipPriceCheck` may have a fallback function that changes state,
        // which can cause a `THROW` that burns all gas, or does not change state and instead returns empty data.
        // To handle these cases, we use a special call construction with a strict gas limit.
        (bool success, bytes memory returnData) = OptionalCall.staticCallOptionalSafe({
            target: priceFeed,
            data: abi.encodeWithSelector(IPriceFeed.skipPriceCheck.selector),
            gasAllowance: 10_000
        });
        if (success) skipCheck = abi.decode(returnData, (bool));
        if (skipCheck && stalenessPeriod != 0 || !skipCheck && stalenessPeriod == 0) {
            revert IncorrectParameterException();
        }
    }

    /// @dev Returns answer from a price feed with optional sanity and staleness checks
    function _getValidatedPrice(address priceFeed, uint32 stalenessPeriod, bool skipCheck)
        internal
        view
        returns (int256 answer, uint256 updatedAt)
    {
        (, answer,, updatedAt,) = IPriceFeed(priceFeed).latestRoundData();
        _checkAnswer(answer, updatedAt, stalenessPeriod, skipCheck);
    }
}

File 4 of 9 : IExceptions.sol
// SPDX-License-Identifier: MIT
// Gearbox Protocol. Generalized leverage for DeFi protocols
// (c) Gearbox Foundation, 2024.
pragma solidity ^0.8.17;

// ------- //
// GENERAL //
// ------- //

/// @notice Thrown on attempting to set an important address to zero address
error ZeroAddressException();

/// @notice Thrown when attempting to pass a zero amount to a funding-related operation
error AmountCantBeZeroException();

/// @notice Thrown on incorrect input parameter
error IncorrectParameterException();

/// @notice Thrown when balance is insufficient to perform an operation
error InsufficientBalanceException();

/// @notice Thrown if parameter is out of range
error ValueOutOfRangeException();

/// @notice Thrown when trying to send ETH to a contract that is not allowed to receive ETH directly
error ReceiveIsNotAllowedException();

/// @notice Thrown on attempting to set an EOA as an important contract in the system
error AddressIsNotContractException(address);

/// @notice Thrown on attempting to receive a token that is not a collateral token or was forbidden
error TokenNotAllowedException();

/// @notice Thrown on attempting to add a token that is already in a collateral list
error TokenAlreadyAddedException();

/// @notice Thrown when attempting to use quota-related logic for a token that is not quoted in quota keeper
error TokenIsNotQuotedException();

/// @notice Thrown on attempting to interact with an address that is not a valid target contract
error TargetContractNotAllowedException();

/// @notice Thrown if function is not implemented
error NotImplementedException();

// ------------------ //
// CONTRACTS REGISTER //
// ------------------ //

/// @notice Thrown when an address is expected to be a registered credit manager, but is not
error RegisteredCreditManagerOnlyException();

/// @notice Thrown when an address is expected to be a registered pool, but is not
error RegisteredPoolOnlyException();

// ---------------- //
// ADDRESS PROVIDER //
// ---------------- //

/// @notice Reverts if address key isn't found in address provider
error AddressNotFoundException();

// ----------------- //
// POOL, PQK, GAUGES //
// ----------------- //

/// @notice Thrown by pool-adjacent contracts when a credit manager being connected has a wrong pool address
error IncompatibleCreditManagerException();

/// @notice Thrown when attempting to set an incompatible successor staking contract
error IncompatibleSuccessorException();

/// @notice Thrown when attempting to vote in a non-approved contract
error VotingContractNotAllowedException();

/// @notice Thrown when attempting to unvote more votes than there are
error InsufficientVotesException();

/// @notice Thrown when attempting to borrow more than the second point on a two-point curve
error BorrowingMoreThanU2ForbiddenException();

/// @notice Thrown when a credit manager attempts to borrow more than its limit in the current block, or in general
error CreditManagerCantBorrowException();

/// @notice Thrown when attempting to connect a quota keeper to an incompatible pool
error IncompatiblePoolQuotaKeeperException();

/// @notice Thrown when attempting to connect a gauge to an incompatible pool quota keeper
error IncompatibleGaugeException();

/// @notice Thrown when the quota is outside of min/max bounds
error QuotaIsOutOfBoundsException();

// -------------- //
// CREDIT MANAGER //
// -------------- //

/// @notice Thrown on failing a full collateral check after multicall
error NotEnoughCollateralException();

/// @notice Thrown if an attempt to approve a collateral token to adapter's target contract fails
error AllowanceFailedException();

/// @notice Thrown on attempting to perform an action for a credit account that does not exist
error CreditAccountDoesNotExistException();

/// @notice Thrown on configurator attempting to add more than 255 collateral tokens
error TooManyTokensException();

/// @notice Thrown if more than the maximum number of tokens were enabled on a credit account
error TooManyEnabledTokensException();

/// @notice Thrown when attempting to execute a protocol interaction without active credit account set
error ActiveCreditAccountNotSetException();

/// @notice Thrown when trying to update credit account's debt more than once in the same block
error DebtUpdatedTwiceInOneBlockException();

/// @notice Thrown when trying to repay all debt while having active quotas
error DebtToZeroWithActiveQuotasException();

/// @notice Thrown when a zero-debt account attempts to update quota
error UpdateQuotaOnZeroDebtAccountException();

/// @notice Thrown when attempting to close an account with non-zero debt
error CloseAccountWithNonZeroDebtException();

/// @notice Thrown when value of funds remaining on the account after liquidation is insufficient
error InsufficientRemainingFundsException();

/// @notice Thrown when Credit Facade tries to write over a non-zero active Credit Account
error ActiveCreditAccountOverridenException();

// ------------------- //
// CREDIT CONFIGURATOR //
// ------------------- //

/// @notice Thrown on attempting to use a non-ERC20 contract or an EOA as a token
error IncorrectTokenContractException();

/// @notice Thrown if the newly set LT if zero or greater than the underlying's LT
error IncorrectLiquidationThresholdException();

/// @notice Thrown if borrowing limits are incorrect: minLimit > maxLimit or maxLimit > blockLimit
error IncorrectLimitsException();

/// @notice Thrown if the new expiration date is less than the current expiration date or current timestamp
error IncorrectExpirationDateException();

/// @notice Thrown if a contract returns a wrong credit manager or reverts when trying to retrieve it
error IncompatibleContractException();

/// @notice Thrown if attempting to forbid an adapter that is not registered in the credit manager
error AdapterIsNotRegisteredException();

/// @notice Thrown if new credit configurator's set of allowed adapters differs from the current one
error IncorrectAdaptersSetException();

/// @notice Thrown if attempting to schedule a token's LT ramping that is too short in duration
error RampDurationTooShortException();

/// @notice Thrown if attempting to set liquidation fees such that the sum of premium and fee changes
error InconsistentLiquidationFeesException();

/// @notice Thrown if attempting to set expired liquidation fees such that the sum of premium and fee changes
error InconsistentExpiredLiquidationFeesException();

// ------------- //
// CREDIT FACADE //
// ------------- //

/// @notice Thrown when attempting to perform an action that is forbidden in whitelisted mode
error ForbiddenInWhitelistedModeException();

/// @notice Thrown if credit facade is not expirable, and attempted aciton requires expirability
error NotAllowedWhenNotExpirableException();

/// @notice Thrown if a selector that doesn't match any allowed function is passed to the credit facade in a multicall
error UnknownMethodException(bytes4 selector);

/// @notice Thrown if a liquidator tries to liquidate an account with a health factor above 1
error CreditAccountNotLiquidatableException();

/// @notice Thrown if a liquidator tries to liquidate an account with loss but violates the loss policy
error CreditAccountNotLiquidatableWithLossException();

/// @notice Thrown if too much new debt was taken within a single block
error BorrowedBlockLimitException();

/// @notice Thrown if the new debt principal for a credit account falls outside of borrowing limits
error BorrowAmountOutOfLimitsException();

/// @notice Thrown if a user attempts to open an account via an expired credit facade
error NotAllowedAfterExpirationException();

/// @notice Thrown if expected balances are attempted to be set twice without performing a slippage check
error ExpectedBalancesAlreadySetException();

/// @notice Thrown if attempting to perform a slippage check when excepted balances are not set
error ExpectedBalancesNotSetException();

/// @notice Thrown if balance of at least one token is less than expected during a slippage check
error BalanceLessThanExpectedException(address token);

/// @notice Thrown when trying to perform an action that is forbidden when credit account has enabled forbidden tokens
error ForbiddenTokensException(uint256 forbiddenTokensMask);

/// @notice Thrown when forbidden token quota is increased during the multicall
error ForbiddenTokenQuotaIncreasedException(address token);

/// @notice Thrown when enabled forbidden token balance is increased during the multicall
error ForbiddenTokenBalanceIncreasedException(address token);

/// @notice Thrown when the remaining token balance is increased during the liquidation
error RemainingTokenBalanceIncreasedException(address token);

/// @notice Thrown if `botMulticall` is called by an address that is not approved by account owner or is forbidden
error NotApprovedBotException(address bot);

/// @notice Thrown when attempting to perform a multicall action with no permission for it
error NoPermissionException(uint256 permission);

/// @notice Thrown when attempting to give a bot unexpected permissions
error UnexpectedPermissionsException(uint256 permissions);

/// @notice Thrown when a custom HF parameter lower than 10000 is passed into the full collateral check
error CustomHealthFactorTooLowException();

/// @notice Thrown when submitted collateral hint is not a valid token mask
error InvalidCollateralHintException(uint256 mask);

/// @notice Thrown when trying to seize underlying token during partial liquidation
error UnderlyingIsNotLiquidatableException();

/// @notice Thrown when amount of collateral seized during partial liquidation is less than required
error SeizedLessThanRequiredException(uint256 seizedAmount);

// ------ //
// ACCESS //
// ------ //

/// @notice Thrown on attempting to call an access restricted function not as credit account owner
error CallerNotCreditAccountOwnerException();

/// @notice Thrown on attempting to call an access restricted function not as configurator
error CallerNotConfiguratorException();

/// @notice Thrown on attempting to call an access-restructed function not as account factory
error CallerNotAccountFactoryException();

/// @notice Thrown on attempting to call an access restricted function not as credit manager
error CallerNotCreditManagerException();

/// @notice Thrown on attempting to call an access restricted function not as credit facade
error CallerNotCreditFacadeException();

/// @notice Thrown on attempting to pause a contract without pausable admin rights
error CallerNotPausableAdminException();

/// @notice Thrown on attempting to unpause a contract without unpausable admin rights
error CallerNotUnpausableAdminException();

/// @notice Thrown on attempting to call an access restricted function not as gauge
error CallerNotGaugeException();

/// @notice Thrown on attempting to call an access restricted function not as quota keeper
error CallerNotPoolQuotaKeeperException();

/// @notice Thrown on attempting to call an access restricted function not as voter
error CallerNotVoterException();

/// @notice Thrown on attempting to call an access restricted function not as allowed adapter
error CallerNotAdapterException();

/// @notice Thrown on attempting to call an access restricted function not as migrator
error CallerNotMigratorException();

/// @notice Thrown when an address that is not the designated executor attempts to execute a transaction
error CallerNotExecutorException();

/// @notice Thrown on attempting to call an access restricted function not as veto admin
error CallerNotVetoAdminException();

// -------- //
// BOT LIST //
// -------- //

/// @notice Thrown when attempting to set non-zero permissions for a forbidden bot
error InvalidBotException();

/// @notice Thrown when attempting to set permissions for a bot that don't meet its requirements
error IncorrectBotPermissionsException();

/// @notice Thrown when attempting to set non-zero permissions for too many bots
error TooManyActiveBotsException();

// --------------- //
// ACCOUNT FACTORY //
// --------------- //

/// @notice Thrown when trying to deploy second master credit account for a credit manager
error MasterCreditAccountAlreadyDeployedException();

/// @notice Thrown when trying to rescue funds from a credit account that is currently in use
error CreditAccountIsInUseException();

// ------------ //
// PRICE ORACLE //
// ------------ //

/// @notice Thrown on attempting to set a token price feed to an address that is not a correct price feed
error IncorrectPriceFeedException();

/// @notice Thrown on attempting to interact with a price feed for a token not added to the price oracle
error PriceFeedDoesNotExistException();

/// @notice Thrown when trying to apply an on-demand price update to a non-updatable price feed
error PriceFeedIsNotUpdatableException();

/// @notice Thrown when price feed returns incorrect price for a token
error IncorrectPriceException();

/// @notice Thrown when token's price feed becomes stale
error StalePriceException();

// SPDX-License-Identifier: BUSL-1.1
// Gearbox Protocol. Generalized leverage for DeFi protocols
// (c) Gearbox Foundation, 2024.
pragma solidity ^0.8.17;

/// @title Optional call library
/// @notice Implements a function that calls a contract that may not have an expected selector.
///         Handles the case where the contract has a fallback function that may or may not change state.
library OptionalCall {
    function staticCallOptionalSafe(address target, bytes memory data, uint256 gasAllowance)
        internal
        view
        returns (bool, bytes memory)
    {
        (bool success, bytes memory returnData) = target.staticcall{gas: gasAllowance}(data);
        return returnData.length > 0 ? (success, returnData) : (false, returnData);
    }
}

File 6 of 9 : SanityCheckTrait.sol
// SPDX-License-Identifier: BUSL-1.1
// Gearbox Protocol. Generalized leverage for DeFi protocols
// (c) Gearbox Foundation, 2024.
pragma solidity ^0.8.17;

import {ZeroAddressException} from "../interfaces/IExceptions.sol";

/// @title Sanity check trait
abstract contract SanityCheckTrait {
    /// @dev Ensures that passed address is non-zero
    modifier nonZeroAddress(address addr) {
        _revertIfZeroAddress(addr);
        _;
    }

    /// @dev Reverts if address is zero
    function _revertIfZeroAddress(address addr) private pure {
        if (addr == address(0)) revert ZeroAddressException();
    }
}

// SPDX-License-Identifier: MIT
// Gearbox Protocol. Generalized leverage for DeFi protocols
// (c) Gearbox Foundation, 2024.
pragma solidity ^0.8.17;

/// @title Version interface
/// @notice Defines contract version and type
interface IVersion {
    /// @notice Contract version
    function version() external view returns (uint256);

    /// @notice Contract type
    function contractType() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// Gearbox Protocol. Generalized leverage for DeFi protocols
// (c) Gearbox Foundation, 2024.
pragma solidity ^0.8.17;

import {IVersion} from "./IVersion.sol";
import {IStateSerializer} from "./IStateSerializer.sol";

/// @title Price feed interface
/// @notice Interface for Chainlink-like price feeds that can be plugged into Gearbox's price oracle
/// @dev Price feeds must have type `PRICE_FEED::{POSTFIX}`
interface IPriceFeed is IVersion, IStateSerializer {
    /// @notice Whether price feed implements its own staleness and sanity checks
    function skipPriceCheck() external view returns (bool);

    /// @notice Scale decimals of price feed answers
    function decimals() external view returns (uint8);

    /// @notice Price feed description
    function description() external view returns (string memory);

    /// @notice Price feed answer in standard Chainlink format, only `answer` and `updatedAt` fields are used
    function latestRoundData() external view returns (uint80, int256 answer, uint256, uint256 updatedAt, uint80);
}

/// @title Updatable price feed interface
/// @notice Extended version of `IPriceFeed` for pull oracles that allow on-demand updates
interface IUpdatablePriceFeed is IPriceFeed {
    /// @notice Emitted when price is updated
    event UpdatePrice(uint256 price);

    /// @notice Whether price feed is updatable
    function updatable() external view returns (bool);

    /// @notice Performs on-demand price update
    function updatePrice(bytes calldata data) external;
}

File 9 of 9 : IStateSerializer.sol
// SPDX-License-Identifier: MIT
// Gearbox Protocol. Generalized leverage for DeFi protocols
// (c) Gearbox Foundation, 2024.
pragma solidity ^0.8.17;

/// @title State serializer interface
/// @notice Generic interface for a contract that can serialize its state into a bytes array
interface IStateSerializer {
    /// @notice Serializes the state of the contract into a bytes array `serializedData`
    function serialize() external view returns (bytes memory serializedData);
}

Settings
{
  "remappings": [
    "@1inch/=lib/@gearbox-protocol/core-v3/lib/@1inch/",
    "@gearbox-protocol/=lib/@gearbox-protocol/",
    "@openzeppelin/=lib/@gearbox-protocol/core-v3/lib/@openzeppelin/",
    "@redstone-finance/=node_modules/@redstone-finance/",
    "@solady/=lib/@solady/src/",
    "ds-test/=lib/@gearbox-protocol/sdk-gov/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/@gearbox-protocol/core-v3/lib/@openzeppelin/lib/erc4626-tests/",
    "forge-std/=lib/@gearbox-protocol/core-v3/lib/forge-std/src/"
  ],
  "optimizer": {
    "runs": 1000,
    "enabled": true
  },
  "metadata": {
    "bytecodeHash": "none",
    "useLiteralContent": true
  },
  "evmVersion": "shanghai",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_priceFeed","type":"address"},{"internalType":"uint32","name":"_stalenessPeriod","type":"uint32"},{"internalType":"int256","name":"_upperBound","type":"int256"},{"internalType":"string","name":"descriptionTicker","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"AddressIsNotContractException","type":"error"},{"inputs":[],"name":"IncorrectParameterException","type":"error"},{"inputs":[],"name":"IncorrectPriceException","type":"error"},{"inputs":[],"name":"IncorrectPriceFeedException","type":"error"},{"inputs":[],"name":"StalePriceException","type":"error"},{"inputs":[],"name":"ZeroAddressException","type":"error"},{"inputs":[],"name":"contractType","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"description","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"latestRoundData","outputs":[{"internalType":"uint80","name":"","type":"uint80"},{"internalType":"int256","name":"","type":"int256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint80","name":"","type":"uint80"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"priceFeed","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"serialize","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"skipCheck","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"skipPriceCheck","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stalenessPeriod","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"upperBound","outputs":[{"internalType":"int256","name":"","type":"int256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]

0x61010060405234801562000011575f80fd5b5060405162000b8638038062000b86833981016040819052620000349162000354565b836200004081620000ab565b5f831362000061576040516347fbaa9760e01b815260040160405180910390fd5b6001600160a01b038516608081905263ffffffff851660a0819052620000889190620000d6565b151560c05260e08390526200009d826200026c565b5f5550620004b39350505050565b6001600160a01b038116620000d357604051635919af9760e11b815260040160405180910390fd5b50565b5f826001600160a01b03163b5f03620001115760405163df4c572d60e01b81526001600160a01b038416600482015260240160405180910390fd5b826001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa9250505080156200016e575060408051601f3d908101601f191682019092526200016b918101906200044c565b60015b6200018c576040516367a7cd4360e01b815260040160405180910390fd5b8060ff16600814620001b1576040516367a7cd4360e01b815260040160405180910390fd5b506040805160048152602481019091526020810180516001600160e01b0390811663d62ada1160e01b179091525f918291620001f4918791612710906200029516565b91509150811562000218578080602001905181019062000215919062000475565b92505b8280156200022b575063ffffffff841615155b806200024557508215801562000245575063ffffffff8416155b1562000264576040516347fbaa9760e01b815260040160405180910390fd5b505092915050565b805160218110620002845763ec92f9a35f526004601cfd5b9081015160209190910360031b1b90565b5f60605f80866001600160a01b03168587604051620002b5919062000496565b5f604051808303818686fa925050503d805f8114620002f0576040519150601f19603f3d011682016040523d82523d5f602084013e620002f5565b606091505b50915091505f8151116200030b575f816200030e565b81815b935093505050935093915050565b634e487b7160e01b5f52604160045260245ffd5b5f5b838110156200034c57818101518382015260200162000332565b50505f910152565b5f805f806080858703121562000368575f80fd5b84516001600160a01b03811681146200037f575f80fd5b602086015190945063ffffffff8116811462000399575f80fd5b6040860151606087015191945092506001600160401b0380821115620003bd575f80fd5b818701915087601f830112620003d1575f80fd5b815181811115620003e657620003e66200031c565b604051601f8201601f19908116603f011681019083821181831017156200041157620004116200031c565b816040528281528a60208487010111156200042a575f80fd5b6200043d83602083016020880162000330565b979a9699509497505050505050565b5f602082840312156200045d575f80fd5b815160ff811681146200046e575f80fd5b9392505050565b5f6020828403121562000486575f80fd5b815180151581146200046e575f80fd5b5f8251620004a981846020870162000330565b9190910192915050565b60805160a05160c05160e051610676620005105f395f81816101d7015281816102a501528181610428015261045501525f818160cd015261032001525f818161019b01526102ff01525f818161014f01526102de01526106765ff3fe608060405234801561000f575f80fd5b50600436106100c4575f3560e01c80639590d9a81161007d578063cb2ef6f711610058578063cb2ef6f714610201578063d62ada1114610228578063feaf968c14610230575f80fd5b80639590d9a814610196578063b09ad8a0146101d2578063bc8018b1146101f9575f80fd5b806354fd4d50116100ad57806354fd4d501461011e5780637284e41614610135578063741bef1a1461014a575f80fd5b806309fad306146100c8578063313ce56714610104575b5f80fd5b6100ef7f000000000000000000000000000000000000000000000000000000000000000081565b60405190151581526020015b60405180910390f35b61010c600881565b60405160ff90911681526020016100fb565b61012761013781565b6040519081526020016100fb565b61013d61026f565b6040516100fb919061056e565b6101717f000000000000000000000000000000000000000000000000000000000000000081565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016100fb565b6101bd7f000000000000000000000000000000000000000000000000000000000000000081565b60405163ffffffff90911681526020016100fb565b6101277f000000000000000000000000000000000000000000000000000000000000000081565b61013d61029f565b6101277f50524943455f464545443a3a424f554e4445440000000000000000000000000081565b6100ef600181565b6102386102d2565b6040805169ffffffffffffffffffff968716815260208101959095528401929092526060830152909116608082015260a0016100fb565b606061027b5f54610365565b60405160200161028b9190610587565b604051602081830303815290604052905090565b604080517f000000000000000000000000000000000000000000000000000000000000000060208201526060910161028b565b5f805f805f805f6103447f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f0000000000000000000000000000000000000000000000000000000000000000610397565b915091505f61035283610425565b90989097505f9650909450859350915050565b6040515f5b82811a1561037a5760010161036a565b808252602082018381525f82820152505060408101604052919050565b5f808473ffffffffffffffffffffffffffffffffffffffff1663feaf968c6040518163ffffffff1660e01b815260040160a060405180830381865afa1580156103e2573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061040691906105e5565b5091945090925061041d915083905082868661047b565b935093915050565b5f7f000000000000000000000000000000000000000000000000000000000000000082136104535781610475565b7f00000000000000000000000000000000000000000000000000000000000000005b92915050565b5f841280610490575080158015610490575083155b156104c7576040517f53b798e200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b801580156104e457506104e063ffffffff831684610631565b4210155b1561051b576040517f16dd0ffb00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b50505050565b5f5b8381101561053b578181015183820152602001610523565b50505f910152565b5f815180845261055a816020860160208601610521565b601f01601f19169290920160200192915050565b602081525f6105806020830184610543565b9392505050565b5f8251610598818460208701610521565b7f20626f756e646564207072696365206665656400000000000000000000000000920191825250601301919050565b805169ffffffffffffffffffff811681146105e0575f80fd5b919050565b5f805f805f60a086880312156105f9575f80fd5b610602866105c7565b9450602086015193506040860151925060608601519150610625608087016105c7565b90509295509295909350565b80820180821115610475577f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffdfea164736f6c6343000817000a000000000000000000000000f5f15f188abcb0d165d1edb7f37f7d6fa2fcebec00000000000000000000000000000000000000000000000000000000000151f8000000000000000000000000000000000000000000000000000000000632ea00000000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000047573646300000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x608060405234801561000f575f80fd5b50600436106100c4575f3560e01c80639590d9a81161007d578063cb2ef6f711610058578063cb2ef6f714610201578063d62ada1114610228578063feaf968c14610230575f80fd5b80639590d9a814610196578063b09ad8a0146101d2578063bc8018b1146101f9575f80fd5b806354fd4d50116100ad57806354fd4d501461011e5780637284e41614610135578063741bef1a1461014a575f80fd5b806309fad306146100c8578063313ce56714610104575b5f80fd5b6100ef7f000000000000000000000000000000000000000000000000000000000000000081565b60405190151581526020015b60405180910390f35b61010c600881565b60405160ff90911681526020016100fb565b61012761013781565b6040519081526020016100fb565b61013d61026f565b6040516100fb919061056e565b6101717f000000000000000000000000f5f15f188abcb0d165d1edb7f37f7d6fa2fcebec81565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016100fb565b6101bd7f00000000000000000000000000000000000000000000000000000000000151f881565b60405163ffffffff90911681526020016100fb565b6101277f000000000000000000000000000000000000000000000000000000000632ea0081565b61013d61029f565b6101277f50524943455f464545443a3a424f554e4445440000000000000000000000000081565b6100ef600181565b6102386102d2565b6040805169ffffffffffffffffffff968716815260208101959095528401929092526060830152909116608082015260a0016100fb565b606061027b5f54610365565b60405160200161028b9190610587565b604051602081830303815290604052905090565b604080517f000000000000000000000000000000000000000000000000000000000632ea0060208201526060910161028b565b5f805f805f805f6103447f000000000000000000000000f5f15f188abcb0d165d1edb7f37f7d6fa2fcebec7f00000000000000000000000000000000000000000000000000000000000151f87f0000000000000000000000000000000000000000000000000000000000000000610397565b915091505f61035283610425565b90989097505f9650909450859350915050565b6040515f5b82811a1561037a5760010161036a565b808252602082018381525f82820152505060408101604052919050565b5f808473ffffffffffffffffffffffffffffffffffffffff1663feaf968c6040518163ffffffff1660e01b815260040160a060405180830381865afa1580156103e2573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061040691906105e5565b5091945090925061041d915083905082868661047b565b935093915050565b5f7f000000000000000000000000000000000000000000000000000000000632ea0082136104535781610475565b7f000000000000000000000000000000000000000000000000000000000632ea005b92915050565b5f841280610490575080158015610490575083155b156104c7576040517f53b798e200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b801580156104e457506104e063ffffffff831684610631565b4210155b1561051b576040517f16dd0ffb00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b50505050565b5f5b8381101561053b578181015183820152602001610523565b50505f910152565b5f815180845261055a816020860160208601610521565b601f01601f19169290920160200192915050565b602081525f6105806020830184610543565b9392505050565b5f8251610598818460208701610521565b7f20626f756e646564207072696365206665656400000000000000000000000000920191825250601301919050565b805169ffffffffffffffffffff811681146105e0575f80fd5b919050565b5f805f805f60a086880312156105f9575f80fd5b610602866105c7565b9450602086015193506040860151925060608601519150610625608087016105c7565b90509295509295909350565b80820180821115610475577f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffdfea164736f6c6343000817000a

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.