MON Price: $0.021168 (+12.62%)

Contract

0xa0A1aC47260B95D334763473B868117EF7343aA0

Overview

MON Balance

Monad Chain LogoMonad Chain LogoMonad Chain Logo0 MON

MON Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

1 Internal Transaction found.

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block From To
345857842025-11-10 1:34:3678 days ago1762738476  Contract Creation0 MON
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
Helpers

Compiler Version
v0.8.29+commit.ab55807c

Optimization Enabled:
Yes with 500 runs

Other Settings:
shanghai EvmVersion
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.8.22;

import { Lockup } from "../types/Lockup.sol";
import { LockupDynamic } from "../types/LockupDynamic.sol";
import { LockupLinear } from "../types/LockupLinear.sol";
import { LockupTranched } from "../types/LockupTranched.sol";
import { Errors } from "./Errors.sol";

/// @title Helpers
/// @notice Library with functions needed to validate input parameters across Lockup streams.
library Helpers {
    /*//////////////////////////////////////////////////////////////////////////
                          USER-FACING READ-ONLY FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @dev Calculate the timestamps and return the segments.
    function calculateSegmentTimestamps(
        LockupDynamic.SegmentWithDuration[] memory segmentsWithDuration,
        uint40 startTime
    )
        public
        pure
        returns (LockupDynamic.Segment[] memory segmentsWithTimestamps)
    {
        uint256 segmentCount = segmentsWithDuration.length;
        segmentsWithTimestamps = new LockupDynamic.Segment[](segmentCount);

        // It is safe to use unchecked arithmetic because {SablierLockup._createLD} will nonetheless
        // check the correctness of the calculated segment timestamps.
        unchecked {
            // The first segment is precomputed because it is needed in the for loop below.
            segmentsWithTimestamps[0] = LockupDynamic.Segment({
                amount: segmentsWithDuration[0].amount,
                exponent: segmentsWithDuration[0].exponent,
                timestamp: startTime + segmentsWithDuration[0].duration
            });

            // Copy the segment amounts and exponents, and calculate the segment timestamps.
            for (uint256 i = 1; i < segmentCount; ++i) {
                segmentsWithTimestamps[i] = LockupDynamic.Segment({
                    amount: segmentsWithDuration[i].amount,
                    exponent: segmentsWithDuration[i].exponent,
                    timestamp: segmentsWithTimestamps[i - 1].timestamp + segmentsWithDuration[i].duration
                });
            }
        }
    }

    /// @dev Calculate the timestamps and return the tranches.
    function calculateTrancheTimestamps(
        LockupTranched.TrancheWithDuration[] memory tranchesWithDuration,
        uint40 startTime
    )
        public
        pure
        returns (LockupTranched.Tranche[] memory tranchesWithTimestamps)
    {
        uint256 trancheCount = tranchesWithDuration.length;
        tranchesWithTimestamps = new LockupTranched.Tranche[](trancheCount);

        // It is safe to use unchecked arithmetic because {SablierLockup-_createLT} will nonetheless check the
        // correctness of the calculated tranche timestamps.
        unchecked {
            // The first tranche is precomputed because it is needed in the for loop below.
            tranchesWithTimestamps[0] = LockupTranched.Tranche({
                amount: tranchesWithDuration[0].amount,
                timestamp: startTime + tranchesWithDuration[0].duration
            });

            // Copy the tranche amounts and calculate the tranche timestamps.
            for (uint256 i = 1; i < trancheCount; ++i) {
                tranchesWithTimestamps[i] = LockupTranched.Tranche({
                    amount: tranchesWithDuration[i].amount,
                    timestamp: tranchesWithTimestamps[i - 1].timestamp + tranchesWithDuration[i].duration
                });
            }
        }
    }

    /// @dev Checks the parameters of the {SablierLockup-_createLD} function.
    function checkCreateLD(
        address sender,
        Lockup.Timestamps memory timestamps,
        uint128 depositAmount,
        LockupDynamic.Segment[] memory segments,
        address token,
        address nativeToken,
        string memory shape
    )
        public
        pure
    {
        // Check: validate the user-provided common parameters.
        _checkCreateStream(sender, depositAmount, timestamps.start, token, nativeToken, shape);

        // Check: validate the user-provided segments.
        _checkSegments(segments, depositAmount, timestamps);
    }

    /// @dev Checks the parameters of the {SablierLockup-_createLL} function.
    function checkCreateLL(
        address sender,
        Lockup.Timestamps memory timestamps,
        uint40 cliffTime,
        uint128 depositAmount,
        LockupLinear.UnlockAmounts memory unlockAmounts,
        address token,
        address nativeToken,
        string memory shape
    )
        public
        pure
    {
        // Check: validate the user-provided common parameters.
        _checkCreateStream(sender, depositAmount, timestamps.start, token, nativeToken, shape);

        // Check: validate the user-provided cliff and end times.
        _checkTimestampsAndUnlockAmounts(depositAmount, timestamps, cliffTime, unlockAmounts);
    }

    /// @dev Checks the parameters of the {SablierLockup-_createLT} function.
    function checkCreateLT(
        address sender,
        Lockup.Timestamps memory timestamps,
        uint128 depositAmount,
        LockupTranched.Tranche[] memory tranches,
        address token,
        address nativeToken,
        string memory shape
    )
        public
        pure
    {
        // Check: validate the user-provided common parameters.
        _checkCreateStream(sender, depositAmount, timestamps.start, token, nativeToken, shape);

        // Check: validate the user-provided segments.
        _checkTranches(tranches, depositAmount, timestamps);
    }

    /*//////////////////////////////////////////////////////////////////////////
                            PRIVATE READ-ONLY FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    /// @dev Checks the user-provided cliff, end times, and unlock amounts of an LL stream.
    function _checkTimestampsAndUnlockAmounts(
        uint128 depositAmount,
        Lockup.Timestamps memory timestamps,
        uint40 cliffTime,
        LockupLinear.UnlockAmounts memory unlockAmounts
    )
        private
        pure
    {
        // Since a cliff time of zero means there is no cliff, the following checks are performed only if it's not zero.
        if (cliffTime > 0) {
            // Check: the start time is strictly less than the cliff time.
            if (timestamps.start >= cliffTime) {
                revert Errors.SablierHelpers_StartTimeNotLessThanCliffTime(timestamps.start, cliffTime);
            }

            // Check: the cliff time is strictly less than the end time.
            if (cliffTime >= timestamps.end) {
                revert Errors.SablierHelpers_CliffTimeNotLessThanEndTime(cliffTime, timestamps.end);
            }
        }
        // Check: the cliff unlock amount is zero when the cliff time is zero.
        else if (unlockAmounts.cliff > 0) {
            revert Errors.SablierHelpers_CliffTimeZeroUnlockAmountNotZero(unlockAmounts.cliff);
        }

        // Check: the start time is strictly less than the end time.
        if (timestamps.start >= timestamps.end) {
            revert Errors.SablierHelpers_StartTimeNotLessThanEndTime(timestamps.start, timestamps.end);
        }

        // Check: the sum of the start and cliff unlock amounts is not greater than the deposit amount.
        if (unlockAmounts.start + unlockAmounts.cliff > depositAmount) {
            revert Errors.SablierHelpers_UnlockAmountsSumTooHigh(
                depositAmount, unlockAmounts.start, unlockAmounts.cliff
            );
        }
    }

    /// @dev Checks the user-provided common parameters across Lockup streams.
    function _checkCreateStream(
        address sender,
        uint128 depositAmount,
        uint40 startTime,
        address token,
        address nativeToken,
        string memory shape
    )
        private
        pure
    {
        // Check: the sender is not the zero address.
        if (sender == address(0)) {
            revert Errors.SablierHelpers_SenderZeroAddress();
        }

        // Check: the deposit amount is not zero.
        if (depositAmount == 0) {
            revert Errors.SablierHelpers_DepositAmountZero();
        }

        // Check: the start time is not zero.
        if (startTime == 0) {
            revert Errors.SablierHelpers_StartTimeZero();
        }

        // Check: the token is not the native token.
        if (token == nativeToken) {
            revert Errors.SablierHelpers_CreateNativeToken(nativeToken);
        }

        // Check: the shape is not greater than 32 bytes.
        if (bytes(shape).length > 32) {
            revert Errors.SablierHelpers_ShapeExceeds32Bytes(bytes(shape).length);
        }
    }

    /// @dev Checks:
    ///
    /// 1. The first timestamp is strictly greater than the start time.
    /// 2. The timestamps are ordered chronologically.
    /// 3. There are no duplicate timestamps.
    /// 4. The deposit amount is equal to the sum of all segment amounts.
    /// 5. The end time equals the last segment's timestamp.
    function _checkSegments(
        LockupDynamic.Segment[] memory segments,
        uint128 depositAmount,
        Lockup.Timestamps memory timestamps
    )
        private
        pure
    {
        // Check: the segment count is not zero.
        uint256 segmentCount = segments.length;
        if (segmentCount == 0) {
            revert Errors.SablierHelpers_SegmentCountZero();
        }

        // Check: the start time is strictly less than the first segment timestamp.
        if (timestamps.start >= segments[0].timestamp) {
            revert Errors.SablierHelpers_StartTimeNotLessThanFirstSegmentTimestamp(
                timestamps.start, segments[0].timestamp
            );
        }

        // Check: the end time equals the last segment's timestamp.
        if (timestamps.end != segments[segmentCount - 1].timestamp) {
            revert Errors.SablierHelpers_EndTimeNotEqualToLastSegmentTimestamp(
                timestamps.end, segments[segmentCount - 1].timestamp
            );
        }

        // Pre-declare the variables needed in the for loop.
        uint128 segmentAmountsSum;
        uint40 currentSegmentTimestamp;
        uint40 previousSegmentTimestamp;

        // Iterate over the segments to:
        //
        // 1. Calculate the sum of all segment amounts.
        // 2. Check that the timestamps are ordered.
        for (uint256 index = 0; index < segmentCount; ++index) {
            // Add the current segment amount to the sum.
            segmentAmountsSum += segments[index].amount;

            // Check: the current timestamp is strictly greater than the previous timestamp.
            currentSegmentTimestamp = segments[index].timestamp;
            if (currentSegmentTimestamp <= previousSegmentTimestamp) {
                revert Errors.SablierHelpers_SegmentTimestampsNotOrdered(
                    index, previousSegmentTimestamp, currentSegmentTimestamp
                );
            }

            // Make the current timestamp the previous timestamp of the next loop iteration.
            previousSegmentTimestamp = currentSegmentTimestamp;
        }

        // Check: the deposit amount is equal to the segment amounts sum.
        if (depositAmount != segmentAmountsSum) {
            revert Errors.SablierHelpers_DepositAmountNotEqualToSegmentAmountsSum(depositAmount, segmentAmountsSum);
        }
    }

    /// @dev Checks:
    ///
    /// 1. The first timestamp is strictly greater than the start time.
    /// 2. The timestamps are ordered chronologically.
    /// 3. There are no duplicate timestamps.
    /// 4. The deposit amount is equal to the sum of all tranche amounts.
    /// 5. The end time equals the last tranche's timestamp.
    function _checkTranches(
        LockupTranched.Tranche[] memory tranches,
        uint128 depositAmount,
        Lockup.Timestamps memory timestamps
    )
        private
        pure
    {
        // Check: the tranche count is not zero.
        uint256 trancheCount = tranches.length;
        if (trancheCount == 0) {
            revert Errors.SablierHelpers_TrancheCountZero();
        }

        // Check: the start time is strictly less than the first tranche timestamp.
        if (timestamps.start >= tranches[0].timestamp) {
            revert Errors.SablierHelpers_StartTimeNotLessThanFirstTrancheTimestamp(
                timestamps.start, tranches[0].timestamp
            );
        }

        // Check: the end time equals the tranche's timestamp.
        if (timestamps.end != tranches[trancheCount - 1].timestamp) {
            revert Errors.SablierHelpers_EndTimeNotEqualToLastTrancheTimestamp(
                timestamps.end, tranches[trancheCount - 1].timestamp
            );
        }

        // Pre-declare the variables needed in the for loop.
        uint128 trancheAmountsSum;
        uint40 currentTrancheTimestamp;
        uint40 previousTrancheTimestamp;

        // Iterate over the tranches to:
        //
        // 1. Calculate the sum of all tranche amounts.
        // 2. Check that the timestamps are ordered.
        for (uint256 index = 0; index < trancheCount; ++index) {
            // Add the current tranche amount to the sum.
            trancheAmountsSum += tranches[index].amount;

            // Check: the current timestamp is strictly greater than the previous timestamp.
            currentTrancheTimestamp = tranches[index].timestamp;
            if (currentTrancheTimestamp <= previousTrancheTimestamp) {
                revert Errors.SablierHelpers_TrancheTimestampsNotOrdered(
                    index, previousTrancheTimestamp, currentTrancheTimestamp
                );
            }

            // Make the current timestamp the previous timestamp of the next loop iteration.
            previousTrancheTimestamp = currentTrancheTimestamp;
        }

        // Check: the deposit amount is equal to the tranche amounts sum.
        if (depositAmount != trancheAmountsSum) {
            revert Errors.SablierHelpers_DepositAmountNotEqualToTrancheAmountsSum(depositAmount, trancheAmountsSum);
        }
    }
}

File 2 of 37 : Lockup.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/// @notice Namespace for the structs shared by all Lockup models.
library Lockup {
    /// @notice Struct encapsulating the deposit, withdrawn, and refunded amounts, all denoted in units of the token's
    /// decimals.
    /// @dev The deposited and withdrawn amount are often read together, so declaring them in the same slot saves gas.
    /// @param deposited The amount deposited in the stream.
    /// @param withdrawn The cumulative amount withdrawn from the stream.
    /// @param refunded The amount refunded to the sender. Unless the stream was canceled, this is always zero.
    struct Amounts {
        // slot 0
        uint128 deposited;
        uint128 withdrawn;
        // slot 1
        uint128 refunded;
    }

    /// @notice Struct encapsulating the common parameters emitted in the stream creation events.
    /// @param funder The address funding the stream.
    /// @param sender The address distributing the tokens, which is able to cancel the stream.
    /// @param recipient The address receiving the tokens, as well as the NFT owner.
    /// @param depositAmount The deposit amount, denoted in units of the token's decimals.
    /// @param token The contract address of the ERC-20 token to be distributed.
    /// @param cancelable Boolean indicating whether the stream is cancelable or not.
    /// @param transferable Boolean indicating whether the stream NFT is transferable or not.
    /// @param timestamps Struct encapsulating (i) the stream's start time and (ii) end time, all as Unix timestamps.
    /// @param shape An optional parameter to specify the shape of the distribution function. This helps differentiate
    /// streams in the UI.
    struct CreateEventCommon {
        address funder;
        address sender;
        address recipient;
        uint128 depositAmount;
        IERC20 token;
        bool cancelable;
        bool transferable;
        Lockup.Timestamps timestamps;
        string shape;
    }

    /// @notice Struct encapsulating the parameters of the `createWithDurations` functions.
    /// @param sender The address distributing the tokens, with the ability to cancel the stream. It doesn't have to be
    /// the same as `msg.sender`.
    /// @param recipient The address receiving the tokens, as well as the NFT owner.
    /// @param depositAmount The deposit amount, denoted in units of the token's decimals.
    /// @param token The contract address of the ERC-20 token to be distributed.
    /// @param cancelable Indicates if the stream is cancelable.
    /// @param transferable Indicates if the stream NFT is transferable.
    /// @param shape An optional parameter to specify the shape of the distribution function. This helps differentiate
    /// streams in the UI.
    struct CreateWithDurations {
        address sender;
        address recipient;
        uint128 depositAmount;
        IERC20 token;
        bool cancelable;
        bool transferable;
        string shape;
    }

    /// @notice Struct encapsulating the parameters of the `createWithTimestamps` functions.
    /// @param sender The address distributing the tokens, with the ability to cancel the stream. It doesn't have to be
    /// the same as `msg.sender`.
    /// @param recipient The address receiving the tokens, as well as the NFT owner.
    /// @param depositAmount The deposit amount, denoted in units of the token's decimals.
    /// @param token The contract address of the ERC-20 token to be distributed.
    /// @param cancelable Indicates if the stream is cancelable.
    /// @param transferable Indicates if the stream NFT is transferable.
    /// @param timestamps Struct encapsulating (i) the stream's start time and (ii) end time, both as Unix timestamps.
    /// @param shape An optional parameter to specify the shape of the distribution function. This helps differentiate
    /// streams in the UI.
    struct CreateWithTimestamps {
        address sender;
        address recipient;
        uint128 depositAmount;
        IERC20 token;
        bool cancelable;
        bool transferable;
        Timestamps timestamps;
        string shape;
    }

    /// @notice Enum representing the different distribution models used to create Lockup streams.
    /// @dev This determines the streaming function used in the calculations of the unlocked tokens.
    enum Model {
        LOCKUP_LINEAR,
        LOCKUP_DYNAMIC,
        LOCKUP_TRANCHED
    }

    /// @notice Enum representing the different statuses of a stream.
    /// @dev The status can have a "temperature":
    /// 1. Warm: Pending, Streaming. The passage of time alone can change the status.
    /// 2. Cold: Settled, Canceled, Depleted. The passage of time alone cannot change the status.
    /// @custom:value0 PENDING Stream created but not started; tokens are in a pending state.
    /// @custom:value1 STREAMING Active stream where tokens are currently being streamed.
    /// @custom:value2 SETTLED All tokens have been streamed; recipient is due to withdraw them.
    /// @custom:value3 CANCELED Canceled stream; remaining tokens await recipient's withdrawal.
    /// @custom:value4 DEPLETED Depleted stream; all tokens have been withdrawn and/or refunded.
    enum Status {
        // Warm
        PENDING,
        STREAMING,
        // Cold
        SETTLED,
        CANCELED,
        DEPLETED
    }

    /// @notice A common data structure to be stored in all Lockup models.
    /// @dev The fields are arranged like this to save gas via tight variable packing.
    /// @param sender The address distributing the tokens, with the ability to cancel the stream.
    /// @param startTime The Unix timestamp indicating the stream's start.
    /// @param endTime The Unix timestamp indicating the stream's end.
    /// @param isCancelable Boolean indicating if the stream is cancelable.
    /// @param wasCanceled Boolean indicating if the stream was canceled.
    /// @param token The contract address of the ERC-20 token to be distributed.
    /// @param isDepleted Boolean indicating if the stream is depleted.
    /// @param isTransferable Boolean indicating if the stream NFT is transferable.
    /// @param lockupModel The distribution model of the stream.
    /// @param amounts Struct encapsulating the deposit, withdrawn, and refunded amounts, both denoted in units of the
    /// token's decimals.
    struct Stream {
        // slot 0
        address sender;
        uint40 startTime;
        uint40 endTime;
        bool isCancelable;
        bool wasCanceled;
        // slot 1
        IERC20 token;
        bool isDepleted;
        bool isTransferable;
        Model lockupModel;
        // slot 2 and 3
        Amounts amounts;
    }

    /// @notice Struct encapsulating the Lockup timestamps.
    /// @param start The Unix timestamp for the stream's start.
    /// @param end The Unix timestamp for the stream's end.
    struct Timestamps {
        uint40 start;
        uint40 end;
    }
}

File 3 of 37 : LockupDynamic.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;

import { UD2x18 } from "@prb/math/src/UD2x18.sol";

/// @notice Namespace for the structs used only in LD streams.
library LockupDynamic {
    /// @notice Segment struct stored to represent LD streams.
    /// @param amount The amount of tokens streamed in the segment, denoted in units of the token's decimals.
    /// @param exponent The exponent of the segment, denoted as a fixed-point number.
    /// @param timestamp The Unix timestamp indicating the segment's end.
    struct Segment {
        // slot 0
        uint128 amount;
        UD2x18 exponent;
        uint40 timestamp;
    }

    /// @notice Segment struct used at runtime in {SablierLockupDynamic.createWithDurationsLD} function.
    /// @param amount The amount of tokens streamed in the segment, denoted in units of the token's decimals.
    /// @param exponent The exponent of the segment, denoted as a fixed-point number.
    /// @param duration The time difference in seconds between the segment and the previous one.
    struct SegmentWithDuration {
        uint128 amount;
        UD2x18 exponent;
        uint40 duration;
    }
}

File 4 of 37 : LockupLinear.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;

/// @notice Namespace for the structs used only in LL streams.
library LockupLinear {
    /// @notice Struct encapsulating the cliff duration and the total duration used at runtime in
    /// {SablierLockupLinear.createWithDurationsLL} function.
    /// @param cliff The cliff duration in seconds.
    /// @param total The total duration in seconds.
    struct Durations {
        uint40 cliff;
        uint40 total;
    }

    /// @notice Struct encapsulating the unlock amounts for the stream.
    /// @dev The sum of `start` and `cliff` must be less than or equal to deposit amount. Both amounts can be zero.
    /// @param start The amount to be unlocked at the start time.
    /// @param cliff The amount to be unlocked at the cliff time.
    struct UnlockAmounts {
        // slot 0
        uint128 start;
        uint128 cliff;
    }
}

File 5 of 37 : LockupTranched.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;

/// @notice Namespace for the structs used only in LT streams.
library LockupTranched {
    /// @notice Tranche struct stored to represent LT streams.
    /// @param amount The amount of tokens to be unlocked in the tranche, denoted in units of the token's decimals.
    /// @param timestamp The Unix timestamp indicating the tranche's end.
    struct Tranche {
        // slot 0
        uint128 amount;
        uint40 timestamp;
    }

    /// @notice Tranche struct used at runtime in {SablierLockupTranched.createWithDurationsLT} function.
    /// @param amount The amount of tokens to be unlocked in the tranche, denoted in units of the token's decimals.
    /// @param duration The time difference in seconds between the tranche and the previous one.
    struct TrancheWithDuration {
        uint128 amount;
        uint40 duration;
    }
}

File 6 of 37 : Errors.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.22;

import { Lockup } from "../types/Lockup.sol";

/// @title Errors
/// @notice Library containing all custom errors the protocol may revert with.
library Errors {
    /*//////////////////////////////////////////////////////////////////////////
                                SABLIER-BATCH-LOCKUP
    //////////////////////////////////////////////////////////////////////////*/

    error SablierBatchLockup_BatchSizeZero();

    /*//////////////////////////////////////////////////////////////////////////
                                    HELPERS
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Thrown when trying to create a linear stream with a cliff time not strictly less than the end time.
    error SablierHelpers_CliffTimeNotLessThanEndTime(uint40 cliffTime, uint40 endTime);

    /// @notice Thrown when trying to create a stream with a non zero cliff unlock amount when the cliff time is zero.
    error SablierHelpers_CliffTimeZeroUnlockAmountNotZero(uint128 cliffUnlockAmount);

    /// @notice Thrown when trying to create a stream with the native token.
    error SablierHelpers_CreateNativeToken(address nativeToken);

    /// @notice Thrown when trying to create a dynamic stream with a deposit amount not equal to the sum of the segment
    /// amounts.
    error SablierHelpers_DepositAmountNotEqualToSegmentAmountsSum(uint128 depositAmount, uint128 segmentAmountsSum);

    /// @notice Thrown when trying to create a tranched stream with a deposit amount not equal to the sum of the tranche
    /// amounts.
    error SablierHelpers_DepositAmountNotEqualToTrancheAmountsSum(uint128 depositAmount, uint128 trancheAmountsSum);

    /// @notice Thrown when trying to create a stream with a zero deposit amount.
    error SablierHelpers_DepositAmountZero();

    /// @notice Thrown when trying to create a dynamic stream with end time not equal to the last segment's timestamp.
    error SablierHelpers_EndTimeNotEqualToLastSegmentTimestamp(uint40 endTime, uint40 lastSegmentTimestamp);

    /// @notice Thrown when trying to create a tranched stream with end time not equal to the last tranche's timestamp.
    error SablierHelpers_EndTimeNotEqualToLastTrancheTimestamp(uint40 endTime, uint40 lastTrancheTimestamp);

    /// @notice Thrown when trying to create a dynamic stream with no segments.
    error SablierHelpers_SegmentCountZero();

    /// @notice Thrown when trying to create a dynamic stream with unordered segment timestamps.
    error SablierHelpers_SegmentTimestampsNotOrdered(uint256 index, uint40 previousTimestamp, uint40 currentTimestamp);

    /// @notice Thrown when trying to create a stream with the sender as the zero address.
    error SablierHelpers_SenderZeroAddress();

    /// @notice Thrown when trying to create a stream with a shape string exceeding 32 bytes.
    error SablierHelpers_ShapeExceeds32Bytes(uint256 shapeLength);

    /// @notice Thrown when trying to create a linear stream with a start time not strictly less than the cliff time,
    /// when the cliff time does not have a zero value.
    error SablierHelpers_StartTimeNotLessThanCliffTime(uint40 startTime, uint40 cliffTime);

    /// @notice Thrown when trying to create a linear stream with a start time not strictly less than the end time.
    error SablierHelpers_StartTimeNotLessThanEndTime(uint40 startTime, uint40 endTime);

    /// @notice Thrown when trying to create a dynamic stream with a start time not strictly less than the first
    /// segment timestamp.
    error SablierHelpers_StartTimeNotLessThanFirstSegmentTimestamp(uint40 startTime, uint40 firstSegmentTimestamp);

    /// @notice Thrown when trying to create a tranched stream with a start time not strictly less than the first
    /// tranche timestamp.
    error SablierHelpers_StartTimeNotLessThanFirstTrancheTimestamp(uint40 startTime, uint40 firstTrancheTimestamp);

    /// @notice Thrown when trying to create a stream with a zero start time.
    error SablierHelpers_StartTimeZero();

    /// @notice Thrown when trying to create a tranched stream with no tranches.
    error SablierHelpers_TrancheCountZero();

    /// @notice Thrown when trying to create a tranched stream with unordered tranche timestamps.
    error SablierHelpers_TrancheTimestampsNotOrdered(uint256 index, uint40 previousTimestamp, uint40 currentTimestamp);

    /// @notice Thrown when trying to create a stream with the sum of the unlock amounts greater than the deposit
    /// amount.
    error SablierHelpers_UnlockAmountsSumTooHigh(
        uint128 depositAmount, uint128 startUnlockAmount, uint128 cliffUnlockAmount
    );

    /*//////////////////////////////////////////////////////////////////////////
                                    SABLIER-LOCKUP
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Thrown when trying to allow to hook a contract that doesn't implement the interface correctly.
    error SablierLockup_AllowToHookUnsupportedInterface(address recipient);

    /// @notice Thrown when trying to allow to hook an address with no code.
    error SablierLockup_AllowToHookZeroCodeSize(address recipient);

    /// @notice Thrown when trying to withdraw with a fee amount less than the minimum fee.
    error SablierLockup_InsufficientFeePayment(uint256 feePaid, uint256 minFeeWei);

    /// @notice Thrown when the fee transfer fails.
    error SablierLockup_FeeTransferFailed(address comptroller, uint256 feeAmount);

    /// @notice Thrown when the hook does not return the correct selector.
    error SablierLockup_InvalidHookSelector(address recipient);

    /// @notice Thrown when trying to set the native token address when it is already set.
    error SablierLockup_NativeTokenAlreadySet(address nativeToken);

    /// @notice Thrown when trying to transfer Stream NFT when transferability is disabled.
    error SablierLockup_NotTransferable(uint256 tokenId);

    /// @notice Thrown when trying to withdraw an amount greater than the withdrawable amount.
    error SablierLockup_Overdraw(uint256 streamId, uint128 amount, uint128 withdrawableAmount);

    /// @notice Thrown when trying to cancel or renounce a canceled stream.
    error SablierLockup_StreamCanceled(uint256 streamId);

    /// @notice Thrown when trying to cancel, renounce, or withdraw from a depleted stream.
    error SablierLockup_StreamDepleted(uint256 streamId);

    /// @notice Thrown when trying to cancel or renounce a stream that is not cancelable.
    error SablierLockup_StreamNotCancelable(uint256 streamId);

    /// @notice Thrown when trying to burn a stream that is not depleted.
    error SablierLockup_StreamNotDepleted(uint256 streamId);

    /// @notice Thrown when trying to cancel or renounce a settled stream.
    error SablierLockup_StreamSettled(uint256 streamId);

    /// @notice Thrown when `msg.sender` lacks authorization to perform an action.
    error SablierLockup_Unauthorized(uint256 streamId, address caller);

    /// @notice Thrown when trying to withdraw to an address other than the recipient's.
    error SablierLockup_WithdrawalAddressNotRecipient(uint256 streamId, address caller, address to);

    /// @notice Thrown when trying to withdraw zero tokens from a stream.
    error SablierLockup_WithdrawAmountZero(uint256 streamId);

    /// @notice Thrown when trying to withdraw from multiple streams and the number of stream IDs does
    /// not match the number of withdraw amounts.
    error SablierLockup_WithdrawArrayCountsNotEqual(uint256 streamIdsCount, uint256 amountsCount);

    /// @notice Thrown when trying to withdraw to the zero address.
    error SablierLockup_WithdrawToZeroAddress(uint256 streamId);

    /*//////////////////////////////////////////////////////////////////////////
                                SABLIER-LOCKUP-STATE
    //////////////////////////////////////////////////////////////////////////*/

    /// @notice Thrown when a function is called on a stream that does not use the expected Lockup model.
    error SablierLockupState_NotExpectedModel(Lockup.Model actualLockupModel, Lockup.Model expectedLockupModel);

    /// @notice Thrown when the ID references a null stream.
    error SablierLockupState_Null(uint256 streamId);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 8 of 37 : UD2x18.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

/*

██████╗ ██████╗ ██████╗ ███╗   ███╗ █████╗ ████████╗██╗  ██╗
██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║  ██║
██████╔╝██████╔╝██████╔╝██╔████╔██║███████║   ██║   ███████║
██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║   ██║   ██╔══██║
██║     ██║  ██║██████╔╝██║ ╚═╝ ██║██║  ██║   ██║   ██║  ██║
╚═╝     ╚═╝  ╚═╝╚═════╝ ╚═╝     ╚═╝╚═╝  ╚═╝   ╚═╝   ╚═╝  ╚═╝

██╗   ██╗██████╗ ██████╗ ██╗  ██╗ ██╗ █████╗
██║   ██║██╔══██╗╚════██╗╚██╗██╔╝███║██╔══██╗
██║   ██║██║  ██║ █████╔╝ ╚███╔╝ ╚██║╚█████╔╝
██║   ██║██║  ██║██╔═══╝  ██╔██╗  ██║██╔══██╗
╚██████╔╝██████╔╝███████╗██╔╝ ██╗ ██║╚█████╔╝
 ╚═════╝ ╚═════╝ ╚══════╝╚═╝  ╚═╝ ╚═╝ ╚════╝

*/

import "./ud2x18/Casting.sol";
import "./ud2x18/Constants.sol";
import "./ud2x18/Errors.sol";
import "./ud2x18/ValueType.sol";

File 9 of 37 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { UD2x18 } from "./ValueType.sol";

/// @notice Casts a UD2x18 number into SD59x18.
/// @dev There is no overflow check because UD2x18 ⊆ SD59x18.
function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x))));
}

/// @notice Casts a UD2x18 number into UD60x18.
/// @dev There is no overflow check because UD2x18 ⊆ UD60x18.
function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(UD2x18.unwrap(x));
}

/// @notice Casts a UD2x18 number into uint128.
/// @dev There is no overflow check because UD2x18 ⊆ uint128.
function intoUint128(UD2x18 x) pure returns (uint128 result) {
    result = uint128(UD2x18.unwrap(x));
}

/// @notice Casts a UD2x18 number into uint256.
/// @dev There is no overflow check because UD2x18 ⊆ uint256.
function intoUint256(UD2x18 x) pure returns (uint256 result) {
    result = uint256(UD2x18.unwrap(x));
}

/// @notice Casts a UD2x18 number into uint40.
/// @dev Requirements:
/// - x ≤ MAX_UINT40
function intoUint40(UD2x18 x) pure returns (uint40 result) {
    uint64 xUint = UD2x18.unwrap(x);
    if (xUint > uint64(Common.MAX_UINT40)) {
        revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x);
    }
    result = uint40(xUint);
}

/// @notice Alias for {wrap}.
function ud2x18(uint64 x) pure returns (UD2x18 result) {
    result = UD2x18.wrap(x);
}

/// @notice Unwrap a UD2x18 number into uint64.
function unwrap(UD2x18 x) pure returns (uint64 result) {
    result = UD2x18.unwrap(x);
}

/// @notice Wraps a uint64 number into UD2x18.
function wrap(uint64 x) pure returns (UD2x18 result) {
    result = UD2x18.wrap(x);
}

File 10 of 37 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD2x18 } from "./ValueType.sol";

/// @dev Euler's number as a UD2x18 number.
UD2x18 constant E = UD2x18.wrap(2_718281828459045235);

/// @dev The maximum value a UD2x18 number can have.
uint64 constant uMAX_UD2x18 = 18_446744073709551615;
UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18);

/// @dev PI as a UD2x18 number.
UD2x18 constant PI = UD2x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of UD2x18.
UD2x18 constant UNIT = UD2x18.wrap(1e18);
uint64 constant uUNIT = 1e18;

File 11 of 37 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD2x18 } from "./ValueType.sol";

/// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40.
error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);

File 12 of 37 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;

/// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract
/// storage.
type UD2x18 is uint64;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD59x18,
    Casting.intoUD60x18,
    Casting.intoUint128,
    Casting.intoUint256,
    Casting.intoUint40,
    Casting.unwrap
} for UD2x18 global;

File 13 of 37 : Common.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

// Common.sol
//
// Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not
// always operate with SD59x18 and UD60x18 numbers.

/*//////////////////////////////////////////////////////////////////////////
                                CUSTOM ERRORS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Thrown when the resultant value in {mulDiv} overflows uint256.
error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator);

/// @notice Thrown when the resultant value in {mulDiv18} overflows uint256.
error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y);

/// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`.
error PRBMath_MulDivSigned_InputTooSmall();

/// @notice Thrown when the resultant value in {mulDivSigned} overflows int256.
error PRBMath_MulDivSigned_Overflow(int256 x, int256 y);

/*//////////////////////////////////////////////////////////////////////////
                                    CONSTANTS
//////////////////////////////////////////////////////////////////////////*/

/// @dev The maximum value a uint128 number can have.
uint128 constant MAX_UINT128 = type(uint128).max;

/// @dev The maximum value a uint40 number can have.
uint40 constant MAX_UINT40 = type(uint40).max;

/// @dev The maximum value a uint64 number can have.
uint64 constant MAX_UINT64 = type(uint64).max;

/// @dev The unit number, which the decimal precision of the fixed-point types.
uint256 constant UNIT = 1e18;

/// @dev The unit number inverted mod 2^256.
uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281;

/// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant
/// bit in the binary representation of `UNIT`.
uint256 constant UNIT_LPOTD = 262144;

/*//////////////////////////////////////////////////////////////////////////
                                    FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function exp2(uint256 x) pure returns (uint256 result) {
    unchecked {
        // Start from 0.5 in the 192.64-bit fixed-point format.
        result = 0x800000000000000000000000000000000000000000000000;

        // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points:
        //
        // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65.
        // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing
        // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1,
        // we know that `x & 0xFF` is also 1.
        if (x & 0xFF00000000000000 > 0) {
            if (x & 0x8000000000000000 > 0) {
                result = (result * 0x16A09E667F3BCC909) >> 64;
            }
            if (x & 0x4000000000000000 > 0) {
                result = (result * 0x1306FE0A31B7152DF) >> 64;
            }
            if (x & 0x2000000000000000 > 0) {
                result = (result * 0x1172B83C7D517ADCE) >> 64;
            }
            if (x & 0x1000000000000000 > 0) {
                result = (result * 0x10B5586CF9890F62A) >> 64;
            }
            if (x & 0x800000000000000 > 0) {
                result = (result * 0x1059B0D31585743AE) >> 64;
            }
            if (x & 0x400000000000000 > 0) {
                result = (result * 0x102C9A3E778060EE7) >> 64;
            }
            if (x & 0x200000000000000 > 0) {
                result = (result * 0x10163DA9FB33356D8) >> 64;
            }
            if (x & 0x100000000000000 > 0) {
                result = (result * 0x100B1AFA5ABCBED61) >> 64;
            }
        }

        if (x & 0xFF000000000000 > 0) {
            if (x & 0x80000000000000 > 0) {
                result = (result * 0x10058C86DA1C09EA2) >> 64;
            }
            if (x & 0x40000000000000 > 0) {
                result = (result * 0x1002C605E2E8CEC50) >> 64;
            }
            if (x & 0x20000000000000 > 0) {
                result = (result * 0x100162F3904051FA1) >> 64;
            }
            if (x & 0x10000000000000 > 0) {
                result = (result * 0x1000B175EFFDC76BA) >> 64;
            }
            if (x & 0x8000000000000 > 0) {
                result = (result * 0x100058BA01FB9F96D) >> 64;
            }
            if (x & 0x4000000000000 > 0) {
                result = (result * 0x10002C5CC37DA9492) >> 64;
            }
            if (x & 0x2000000000000 > 0) {
                result = (result * 0x1000162E525EE0547) >> 64;
            }
            if (x & 0x1000000000000 > 0) {
                result = (result * 0x10000B17255775C04) >> 64;
            }
        }

        if (x & 0xFF0000000000 > 0) {
            if (x & 0x800000000000 > 0) {
                result = (result * 0x1000058B91B5BC9AE) >> 64;
            }
            if (x & 0x400000000000 > 0) {
                result = (result * 0x100002C5C89D5EC6D) >> 64;
            }
            if (x & 0x200000000000 > 0) {
                result = (result * 0x10000162E43F4F831) >> 64;
            }
            if (x & 0x100000000000 > 0) {
                result = (result * 0x100000B1721BCFC9A) >> 64;
            }
            if (x & 0x80000000000 > 0) {
                result = (result * 0x10000058B90CF1E6E) >> 64;
            }
            if (x & 0x40000000000 > 0) {
                result = (result * 0x1000002C5C863B73F) >> 64;
            }
            if (x & 0x20000000000 > 0) {
                result = (result * 0x100000162E430E5A2) >> 64;
            }
            if (x & 0x10000000000 > 0) {
                result = (result * 0x1000000B172183551) >> 64;
            }
        }

        if (x & 0xFF00000000 > 0) {
            if (x & 0x8000000000 > 0) {
                result = (result * 0x100000058B90C0B49) >> 64;
            }
            if (x & 0x4000000000 > 0) {
                result = (result * 0x10000002C5C8601CC) >> 64;
            }
            if (x & 0x2000000000 > 0) {
                result = (result * 0x1000000162E42FFF0) >> 64;
            }
            if (x & 0x1000000000 > 0) {
                result = (result * 0x10000000B17217FBB) >> 64;
            }
            if (x & 0x800000000 > 0) {
                result = (result * 0x1000000058B90BFCE) >> 64;
            }
            if (x & 0x400000000 > 0) {
                result = (result * 0x100000002C5C85FE3) >> 64;
            }
            if (x & 0x200000000 > 0) {
                result = (result * 0x10000000162E42FF1) >> 64;
            }
            if (x & 0x100000000 > 0) {
                result = (result * 0x100000000B17217F8) >> 64;
            }
        }

        if (x & 0xFF000000 > 0) {
            if (x & 0x80000000 > 0) {
                result = (result * 0x10000000058B90BFC) >> 64;
            }
            if (x & 0x40000000 > 0) {
                result = (result * 0x1000000002C5C85FE) >> 64;
            }
            if (x & 0x20000000 > 0) {
                result = (result * 0x100000000162E42FF) >> 64;
            }
            if (x & 0x10000000 > 0) {
                result = (result * 0x1000000000B17217F) >> 64;
            }
            if (x & 0x8000000 > 0) {
                result = (result * 0x100000000058B90C0) >> 64;
            }
            if (x & 0x4000000 > 0) {
                result = (result * 0x10000000002C5C860) >> 64;
            }
            if (x & 0x2000000 > 0) {
                result = (result * 0x1000000000162E430) >> 64;
            }
            if (x & 0x1000000 > 0) {
                result = (result * 0x10000000000B17218) >> 64;
            }
        }

        if (x & 0xFF0000 > 0) {
            if (x & 0x800000 > 0) {
                result = (result * 0x1000000000058B90C) >> 64;
            }
            if (x & 0x400000 > 0) {
                result = (result * 0x100000000002C5C86) >> 64;
            }
            if (x & 0x200000 > 0) {
                result = (result * 0x10000000000162E43) >> 64;
            }
            if (x & 0x100000 > 0) {
                result = (result * 0x100000000000B1721) >> 64;
            }
            if (x & 0x80000 > 0) {
                result = (result * 0x10000000000058B91) >> 64;
            }
            if (x & 0x40000 > 0) {
                result = (result * 0x1000000000002C5C8) >> 64;
            }
            if (x & 0x20000 > 0) {
                result = (result * 0x100000000000162E4) >> 64;
            }
            if (x & 0x10000 > 0) {
                result = (result * 0x1000000000000B172) >> 64;
            }
        }

        if (x & 0xFF00 > 0) {
            if (x & 0x8000 > 0) {
                result = (result * 0x100000000000058B9) >> 64;
            }
            if (x & 0x4000 > 0) {
                result = (result * 0x10000000000002C5D) >> 64;
            }
            if (x & 0x2000 > 0) {
                result = (result * 0x1000000000000162E) >> 64;
            }
            if (x & 0x1000 > 0) {
                result = (result * 0x10000000000000B17) >> 64;
            }
            if (x & 0x800 > 0) {
                result = (result * 0x1000000000000058C) >> 64;
            }
            if (x & 0x400 > 0) {
                result = (result * 0x100000000000002C6) >> 64;
            }
            if (x & 0x200 > 0) {
                result = (result * 0x10000000000000163) >> 64;
            }
            if (x & 0x100 > 0) {
                result = (result * 0x100000000000000B1) >> 64;
            }
        }

        if (x & 0xFF > 0) {
            if (x & 0x80 > 0) {
                result = (result * 0x10000000000000059) >> 64;
            }
            if (x & 0x40 > 0) {
                result = (result * 0x1000000000000002C) >> 64;
            }
            if (x & 0x20 > 0) {
                result = (result * 0x10000000000000016) >> 64;
            }
            if (x & 0x10 > 0) {
                result = (result * 0x1000000000000000B) >> 64;
            }
            if (x & 0x8 > 0) {
                result = (result * 0x10000000000000006) >> 64;
            }
            if (x & 0x4 > 0) {
                result = (result * 0x10000000000000003) >> 64;
            }
            if (x & 0x2 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
            if (x & 0x1 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
        }

        // In the code snippet below, two operations are executed simultaneously:
        //
        // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1
        // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192.
        // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format.
        //
        // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the,
        // integer part, $2^n$.
        result *= UNIT;
        result >>= (191 - (x >> 64));
    }
}

/// @notice Finds the zero-based index of the first 1 in the binary representation of x.
///
/// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set
///
/// Each step in this implementation is equivalent to this high-level code:
///
/// ```solidity
/// if (x >= 2 ** 128) {
///     x >>= 128;
///     result += 128;
/// }
/// ```
///
/// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here:
/// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948
///
/// The Yul instructions used below are:
///
/// - "gt" is "greater than"
/// - "or" is the OR bitwise operator
/// - "shl" is "shift left"
/// - "shr" is "shift right"
///
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return result The index of the most significant bit as a uint256.
/// @custom:smtchecker abstract-function-nondet
function msb(uint256 x) pure returns (uint256 result) {
    // 2^128
    assembly ("memory-safe") {
        let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^64
    assembly ("memory-safe") {
        let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^32
    assembly ("memory-safe") {
        let factor := shl(5, gt(x, 0xFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^16
    assembly ("memory-safe") {
        let factor := shl(4, gt(x, 0xFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^8
    assembly ("memory-safe") {
        let factor := shl(3, gt(x, 0xFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^4
    assembly ("memory-safe") {
        let factor := shl(2, gt(x, 0xF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^2
    assembly ("memory-safe") {
        let factor := shl(1, gt(x, 0x3))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^1
    // No need to shift x any more.
    assembly ("memory-safe") {
        let factor := gt(x, 0x1)
        result := or(result, factor)
    }
}

/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - The denominator must not be zero.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as a uint256.
/// @param y The multiplier as a uint256.
/// @param denominator The divisor as a uint256.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) {
    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
    // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256
    // variables such that product = prod1 * 2^256 + prod0.
    uint256 prod0; // Least significant 256 bits of the product
    uint256 prod1; // Most significant 256 bits of the product
    assembly ("memory-safe") {
        let mm := mulmod(x, y, not(0))
        prod0 := mul(x, y)
        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
    }

    // Handle non-overflow cases, 256 by 256 division.
    if (prod1 == 0) {
        unchecked {
            return prod0 / denominator;
        }
    }

    // Make sure the result is less than 2^256. Also prevents denominator == 0.
    if (prod1 >= denominator) {
        revert PRBMath_MulDiv_Overflow(x, y, denominator);
    }

    ////////////////////////////////////////////////////////////////////////////
    // 512 by 256 division
    ////////////////////////////////////////////////////////////////////////////

    // Make division exact by subtracting the remainder from [prod1 prod0].
    uint256 remainder;
    assembly ("memory-safe") {
        // Compute remainder using the mulmod Yul instruction.
        remainder := mulmod(x, y, denominator)

        // Subtract 256 bit number from 512-bit number.
        prod1 := sub(prod1, gt(remainder, prod0))
        prod0 := sub(prod0, remainder)
    }

    unchecked {
        // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow
        // because the denominator cannot be zero at this point in the function execution. The result is always >= 1.
        // For more detail, see https://cs.stackexchange.com/q/138556/92363.
        uint256 lpotdod = denominator & (~denominator + 1);
        uint256 flippedLpotdod;

        assembly ("memory-safe") {
            // Factor powers of two out of denominator.
            denominator := div(denominator, lpotdod)

            // Divide [prod1 prod0] by lpotdod.
            prod0 := div(prod0, lpotdod)

            // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one.
            // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits.
            // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693
            flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
        }

        // Shift in bits from prod1 into prod0.
        prod0 |= prod1 * flippedLpotdod;

        // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
        // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
        // four bits. That is, denominator * inv = 1 mod 2^4.
        uint256 inverse = (3 * denominator) ^ 2;

        // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
        // in modular arithmetic, doubling the correct bits in each step.
        inverse *= 2 - denominator * inverse; // inverse mod 2^8
        inverse *= 2 - denominator * inverse; // inverse mod 2^16
        inverse *= 2 - denominator * inverse; // inverse mod 2^32
        inverse *= 2 - denominator * inverse; // inverse mod 2^64
        inverse *= 2 - denominator * inverse; // inverse mod 2^128
        inverse *= 2 - denominator * inverse; // inverse mod 2^256

        // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
        // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
        // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
        // is no longer required.
        result = prod0 * inverse;
    }
}

/// @notice Calculates x*y÷1e18 with 512-bit precision.
///
/// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18.
///
/// Notes:
/// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}.
/// - The result is rounded toward zero.
/// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations:
///
/// $$
/// \begin{cases}
///     x * y = MAX\_UINT256 * UNIT \\
///     (x * y) \% UNIT \geq \frac{UNIT}{2}
/// \end{cases}
/// $$
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) {
    uint256 prod0;
    uint256 prod1;
    assembly ("memory-safe") {
        let mm := mulmod(x, y, not(0))
        prod0 := mul(x, y)
        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
    }

    if (prod1 == 0) {
        unchecked {
            return prod0 / UNIT;
        }
    }

    if (prod1 >= UNIT) {
        revert PRBMath_MulDiv18_Overflow(x, y);
    }

    uint256 remainder;
    assembly ("memory-safe") {
        remainder := mulmod(x, y, UNIT)
        result :=
            mul(
                or(
                    div(sub(prod0, remainder), UNIT_LPOTD),
                    mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1))
                ),
                UNIT_INVERSE
            )
    }
}

/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - None of the inputs can be `type(int256).min`.
/// - The result must fit in int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
/// @custom:smtchecker abstract-function-nondet
function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) {
    if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
        revert PRBMath_MulDivSigned_InputTooSmall();
    }

    // Get hold of the absolute values of x, y and the denominator.
    uint256 xAbs;
    uint256 yAbs;
    uint256 dAbs;
    unchecked {
        xAbs = x < 0 ? uint256(-x) : uint256(x);
        yAbs = y < 0 ? uint256(-y) : uint256(y);
        dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator);
    }

    // Compute the absolute value of x*y÷denominator. The result must fit in int256.
    uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs);
    if (resultAbs > uint256(type(int256).max)) {
        revert PRBMath_MulDivSigned_Overflow(x, y);
    }

    // Get the signs of x, y and the denominator.
    uint256 sx;
    uint256 sy;
    uint256 sd;
    assembly ("memory-safe") {
        // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement.
        sx := sgt(x, sub(0, 1))
        sy := sgt(y, sub(0, 1))
        sd := sgt(denominator, sub(0, 1))
    }

    // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs.
    // If there are, the result should be negative. Otherwise, it should be positive.
    unchecked {
        result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs);
    }
}

/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - If x is not a perfect square, the result is rounded down.
/// - Credits to OpenZeppelin for the explanations in comments below.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function sqrt(uint256 x) pure returns (uint256 result) {
    if (x == 0) {
        return 0;
    }

    // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x.
    //
    // We know that the "msb" (most significant bit) of x is a power of 2 such that we have:
    //
    // $$
    // msb(x) <= x <= 2*msb(x)$
    // $$
    //
    // We write $msb(x)$ as $2^k$, and we get:
    //
    // $$
    // k = log_2(x)
    // $$
    //
    // Thus, we can write the initial inequality as:
    //
    // $$
    // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\
    // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\
    // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1}
    // $$
    //
    // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit.
    uint256 xAux = uint256(x);
    result = 1;
    if (xAux >= 2 ** 128) {
        xAux >>= 128;
        result <<= 64;
    }
    if (xAux >= 2 ** 64) {
        xAux >>= 64;
        result <<= 32;
    }
    if (xAux >= 2 ** 32) {
        xAux >>= 32;
        result <<= 16;
    }
    if (xAux >= 2 ** 16) {
        xAux >>= 16;
        result <<= 8;
    }
    if (xAux >= 2 ** 8) {
        xAux >>= 8;
        result <<= 4;
    }
    if (xAux >= 2 ** 4) {
        xAux >>= 4;
        result <<= 2;
    }
    if (xAux >= 2 ** 2) {
        result <<= 1;
    }

    // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at
    // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision
    // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of
    // precision into the expected uint128 result.
    unchecked {
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;

        // If x is not a perfect square, round the result toward zero.
        uint256 roundedResult = x / result;
        if (result >= roundedResult) {
            result = roundedResult;
        }
    }
}

File 14 of 37 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;

/// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int256.
type SD59x18 is int256;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoInt256,
    Casting.intoSD1x18,
    Casting.intoSD21x18,
    Casting.intoUD2x18,
    Casting.intoUD21x18,
    Casting.intoUD60x18,
    Casting.intoUint256,
    Casting.intoUint128,
    Casting.intoUint40,
    Casting.unwrap
} for SD59x18 global;

/*//////////////////////////////////////////////////////////////////////////
                            MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

using {
    Math.abs,
    Math.avg,
    Math.ceil,
    Math.div,
    Math.exp,
    Math.exp2,
    Math.floor,
    Math.frac,
    Math.gm,
    Math.inv,
    Math.log10,
    Math.log2,
    Math.ln,
    Math.mul,
    Math.pow,
    Math.powu,
    Math.sqrt
} for SD59x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

using {
    Helpers.add,
    Helpers.and,
    Helpers.eq,
    Helpers.gt,
    Helpers.gte,
    Helpers.isZero,
    Helpers.lshift,
    Helpers.lt,
    Helpers.lte,
    Helpers.mod,
    Helpers.neq,
    Helpers.not,
    Helpers.or,
    Helpers.rshift,
    Helpers.sub,
    Helpers.uncheckedAdd,
    Helpers.uncheckedSub,
    Helpers.uncheckedUnary,
    Helpers.xor
} for SD59x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                    OPERATORS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes it possible to use these operators on the SD59x18 type.
using {
    Helpers.add as +,
    Helpers.and2 as &,
    Math.div as /,
    Helpers.eq as ==,
    Helpers.gt as >,
    Helpers.gte as >=,
    Helpers.lt as <,
    Helpers.lte as <=,
    Helpers.mod as %,
    Math.mul as *,
    Helpers.neq as !=,
    Helpers.not as ~,
    Helpers.or as |,
    Helpers.sub as -,
    Helpers.unary as -,
    Helpers.xor as ^
} for SD59x18 global;

File 15 of 37 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;

/// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256.
/// @dev The value type is defined here so it can be imported in all other files.
type UD60x18 is uint256;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD1x18,
    Casting.intoSD21x18,
    Casting.intoSD59x18,
    Casting.intoUD2x18,
    Casting.intoUD21x18,
    Casting.intoUint128,
    Casting.intoUint256,
    Casting.intoUint40,
    Casting.unwrap
} for UD60x18 global;

/*//////////////////////////////////////////////////////////////////////////
                            MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
    Math.avg,
    Math.ceil,
    Math.div,
    Math.exp,
    Math.exp2,
    Math.floor,
    Math.frac,
    Math.gm,
    Math.inv,
    Math.ln,
    Math.log10,
    Math.log2,
    Math.mul,
    Math.pow,
    Math.powu,
    Math.sqrt
} for UD60x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
    Helpers.add,
    Helpers.and,
    Helpers.eq,
    Helpers.gt,
    Helpers.gte,
    Helpers.isZero,
    Helpers.lshift,
    Helpers.lt,
    Helpers.lte,
    Helpers.mod,
    Helpers.neq,
    Helpers.not,
    Helpers.or,
    Helpers.rshift,
    Helpers.sub,
    Helpers.uncheckedAdd,
    Helpers.uncheckedSub,
    Helpers.xor
} for UD60x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                    OPERATORS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes it possible to use these operators on the UD60x18 type.
using {
    Helpers.add as +,
    Helpers.and2 as &,
    Math.div as /,
    Helpers.eq as ==,
    Helpers.gt as >,
    Helpers.gte as >=,
    Helpers.lt as <,
    Helpers.lte as <=,
    Helpers.or as |,
    Helpers.mod as %,
    Math.mul as *,
    Helpers.neq as !=,
    Helpers.not as ~,
    Helpers.sub as -,
    Helpers.xor as ^
} for UD60x18 global;

File 16 of 37 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_SD21x18, uMIN_SD21x18 } from "../sd21x18/Constants.sol";
import { SD21x18 } from "../sd21x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { uMAX_UD21x18 } from "../ud21x18/Constants.sol";
import { UD21x18 } from "../ud21x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD59x18 } from "./ValueType.sol";

/// @notice Casts an SD59x18 number into int256.
/// @dev This is basically a functional alias for {unwrap}.
function intoInt256(SD59x18 x) pure returns (int256 result) {
    result = SD59x18.unwrap(x);
}

/// @notice Casts an SD59x18 number into SD1x18.
/// @dev Requirements:
/// - x ≥ uMIN_SD1x18
/// - x ≤ uMAX_SD1x18
function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < uMIN_SD1x18) {
        revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x);
    }
    if (xInt > uMAX_SD1x18) {
        revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x);
    }
    result = SD1x18.wrap(int64(xInt));
}

/// @notice Casts an SD59x18 number into SD21x18.
/// @dev Requirements:
/// - x ≥ uMIN_SD21x18
/// - x ≤ uMAX_SD21x18
function intoSD21x18(SD59x18 x) pure returns (SD21x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < uMIN_SD21x18) {
        revert CastingErrors.PRBMath_SD59x18_IntoSD21x18_Underflow(x);
    }
    if (xInt > uMAX_SD21x18) {
        revert CastingErrors.PRBMath_SD59x18_IntoSD21x18_Overflow(x);
    }
    result = SD21x18.wrap(int128(xInt));
}

/// @notice Casts an SD59x18 number into UD2x18.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ uMAX_UD2x18
function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x);
    }
    if (xInt > int256(uint256(uMAX_UD2x18))) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x);
    }
    result = UD2x18.wrap(uint64(uint256(xInt)));
}

/// @notice Casts an SD59x18 number into UD21x18.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ uMAX_UD21x18
function intoUD21x18(SD59x18 x) pure returns (UD21x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD21x18_Underflow(x);
    }
    if (xInt > int256(uint256(uMAX_UD21x18))) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD21x18_Overflow(x);
    }
    result = UD21x18.wrap(uint128(uint256(xInt)));
}

/// @notice Casts an SD59x18 number into UD60x18.
/// @dev Requirements:
/// - x ≥ 0
function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x);
    }
    result = UD60x18.wrap(uint256(xInt));
}

/// @notice Casts an SD59x18 number into uint256.
/// @dev Requirements:
/// - x ≥ 0
function intoUint256(SD59x18 x) pure returns (uint256 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x);
    }
    result = uint256(xInt);
}

/// @notice Casts an SD59x18 number into uint128.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ uMAX_UINT128
function intoUint128(SD59x18 x) pure returns (uint128 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x);
    }
    if (xInt > int256(uint256(MAX_UINT128))) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x);
    }
    result = uint128(uint256(xInt));
}

/// @notice Casts an SD59x18 number into uint40.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ MAX_UINT40
function intoUint40(SD59x18 x) pure returns (uint40 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x);
    }
    if (xInt > int256(uint256(MAX_UINT40))) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x);
    }
    result = uint40(uint256(xInt));
}

/// @notice Alias for {wrap}.
function sd(int256 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(x);
}

/// @notice Alias for {wrap}.
function sd59x18(int256 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(x);
}

/// @notice Unwraps an SD59x18 number into int256.
function unwrap(SD59x18 x) pure returns (int256 result) {
    result = SD59x18.unwrap(x);
}

/// @notice Wraps an int256 number into SD59x18.
function wrap(int256 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(x);
}

File 17 of 37 : Helpers.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { wrap } from "./Casting.sol";
import { SD59x18 } from "./ValueType.sol";

/// @notice Implements the checked addition operation (+) in the SD59x18 type.
function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    return wrap(x.unwrap() + y.unwrap());
}

/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) {
    return wrap(x.unwrap() & bits);
}

/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    return wrap(x.unwrap() & y.unwrap());
}

/// @notice Implements the equal (=) operation in the SD59x18 type.
function eq(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() == y.unwrap();
}

/// @notice Implements the greater than operation (>) in the SD59x18 type.
function gt(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() > y.unwrap();
}

/// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type.
function gte(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() >= y.unwrap();
}

/// @notice Implements a zero comparison check function in the SD59x18 type.
function isZero(SD59x18 x) pure returns (bool result) {
    result = x.unwrap() == 0;
}

/// @notice Implements the left shift operation (<<) in the SD59x18 type.
function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() << bits);
}

/// @notice Implements the lower than operation (<) in the SD59x18 type.
function lt(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() < y.unwrap();
}

/// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type.
function lte(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() <= y.unwrap();
}

/// @notice Implements the unchecked modulo operation (%) in the SD59x18 type.
function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() % y.unwrap());
}

/// @notice Implements the not equal operation (!=) in the SD59x18 type.
function neq(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() != y.unwrap();
}

/// @notice Implements the NOT (~) bitwise operation in the SD59x18 type.
function not(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(~x.unwrap());
}

/// @notice Implements the OR (|) bitwise operation in the SD59x18 type.
function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() | y.unwrap());
}

/// @notice Implements the right shift operation (>>) in the SD59x18 type.
function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() >> bits);
}

/// @notice Implements the checked subtraction operation (-) in the SD59x18 type.
function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() - y.unwrap());
}

/// @notice Implements the checked unary minus operation (-) in the SD59x18 type.
function unary(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(-x.unwrap());
}

/// @notice Implements the unchecked addition operation (+) in the SD59x18 type.
function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    unchecked {
        result = wrap(x.unwrap() + y.unwrap());
    }
}

/// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type.
function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    unchecked {
        result = wrap(x.unwrap() - y.unwrap());
    }
}

/// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type.
function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) {
    unchecked {
        result = wrap(-x.unwrap());
    }
}

/// @notice Implements the XOR (^) bitwise operation in the SD59x18 type.
function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() ^ y.unwrap());
}

File 18 of 37 : Math.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import {
    uEXP_MAX_INPUT,
    uEXP2_MAX_INPUT,
    uEXP_MIN_THRESHOLD,
    uEXP2_MIN_THRESHOLD,
    uHALF_UNIT,
    uLOG2_10,
    uLOG2_E,
    uMAX_SD59x18,
    uMAX_WHOLE_SD59x18,
    uMIN_SD59x18,
    uMIN_WHOLE_SD59x18,
    UNIT,
    uUNIT,
    uUNIT_SQUARED,
    ZERO
} from "./Constants.sol";
import { wrap } from "./Helpers.sol";
import { SD59x18 } from "./ValueType.sol";

/// @notice Calculates the absolute value of x.
///
/// @dev Requirements:
/// - x > MIN_SD59x18.
///
/// @param x The SD59x18 number for which to calculate the absolute value.
/// @return result The absolute value of x as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function abs(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt == uMIN_SD59x18) {
        revert Errors.PRBMath_SD59x18_Abs_MinSD59x18();
    }
    result = xInt < 0 ? wrap(-xInt) : x;
}

/// @notice Calculates the arithmetic average of x and y.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The arithmetic average as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();

    unchecked {
        // This operation is equivalent to `x / 2 +  y / 2`, and it can never overflow.
        int256 sum = (xInt >> 1) + (yInt >> 1);

        if (sum < 0) {
            // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right
            // rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`.
            assembly ("memory-safe") {
                result := add(sum, and(or(xInt, yInt), 1))
            }
        } else {
            // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting.
            result = wrap(sum + (xInt & yInt & 1));
        }
    }
}

/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x ≤ MAX_WHOLE_SD59x18
///
/// @param x The SD59x18 number to ceil.
/// @return result The smallest whole number greater than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt > uMAX_WHOLE_SD59x18) {
        revert Errors.PRBMath_SD59x18_Ceil_Overflow(x);
    }

    int256 remainder = xInt % uUNIT;
    if (remainder == 0) {
        result = x;
    } else {
        unchecked {
            // Solidity uses C fmod style, which returns a modulus with the same sign as x.
            int256 resultInt = xInt - remainder;
            if (xInt > 0) {
                resultInt += uUNIT;
            }
            result = wrap(resultInt);
        }
    }
}

/// @notice Divides two SD59x18 numbers, returning a new SD59x18 number.
///
/// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute
/// values separately.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The denominator must not be zero.
/// - The result must fit in SD59x18.
///
/// @param x The numerator as an SD59x18 number.
/// @param y The denominator as an SD59x18 number.
/// @return result The quotient as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();
    if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
        revert Errors.PRBMath_SD59x18_Div_InputTooSmall();
    }

    // Get hold of the absolute values of x and y.
    uint256 xAbs;
    uint256 yAbs;
    unchecked {
        xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
        yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
    }

    // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18.
    uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs);
    if (resultAbs > uint256(uMAX_SD59x18)) {
        revert Errors.PRBMath_SD59x18_Div_Overflow(x, y);
    }

    // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
    // negative, 0 for positive or zero).
    bool sameSign = (xInt ^ yInt) > -1;

    // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
    unchecked {
        result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
    }
}

/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}.
///
/// Requirements:
/// - Refer to the requirements in {exp2}.
/// - x < 133_084258667509499441.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();

    // Any input less than the threshold returns zero.
    // This check also prevents an overflow for very small numbers.
    if (xInt < uEXP_MIN_THRESHOLD) {
        return ZERO;
    }

    // This check prevents values greater than 192e18 from being passed to {exp2}.
    if (xInt > uEXP_MAX_INPUT) {
        revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x);
    }

    unchecked {
        // Inline the fixed-point multiplication to save gas.
        int256 doubleUnitProduct = xInt * uLOG2_E;
        result = exp2(wrap(doubleUnitProduct / uUNIT));
    }
}

/// @notice Calculates the binary exponent of x using the binary fraction method using the following formula:
///
/// $$
/// 2^{-x} = \frac{1}{2^x}
/// $$
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693.
///
/// Notes:
/// - If x < -59_794705707972522261, the result is zero.
///
/// Requirements:
/// - x < 192e18.
/// - The result must fit in SD59x18.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < 0) {
        // The inverse of any number less than the threshold is truncated to zero.
        if (xInt < uEXP2_MIN_THRESHOLD) {
            return ZERO;
        }

        unchecked {
            // Inline the fixed-point inversion to save gas.
            result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap());
        }
    } else {
        // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
        if (xInt > uEXP2_MAX_INPUT) {
            revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x);
        }

        unchecked {
            // Convert x to the 192.64-bit fixed-point format.
            uint256 x_192x64 = uint256((xInt << 64) / uUNIT);

            // It is safe to cast the result to int256 due to the checks above.
            result = wrap(int256(Common.exp2(x_192x64)));
        }
    }
}

/// @notice Yields the greatest whole number less than or equal to x.
///
/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x ≥ MIN_WHOLE_SD59x18
///
/// @param x The SD59x18 number to floor.
/// @return result The greatest whole number less than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < uMIN_WHOLE_SD59x18) {
        revert Errors.PRBMath_SD59x18_Floor_Underflow(x);
    }

    int256 remainder = xInt % uUNIT;
    if (remainder == 0) {
        result = x;
    } else {
        unchecked {
            // Solidity uses C fmod style, which returns a modulus with the same sign as x.
            int256 resultInt = xInt - remainder;
            if (xInt < 0) {
                resultInt -= uUNIT;
            }
            result = wrap(resultInt);
        }
    }
}

/// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right.
/// of the radix point for negative numbers.
/// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part
/// @param x The SD59x18 number to get the fractional part of.
/// @return result The fractional part of x as an SD59x18 number.
function frac(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() % uUNIT);
}

/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x * y must fit in SD59x18.
/// - x * y must not be negative, since complex numbers are not supported.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();
    if (xInt == 0 || yInt == 0) {
        return ZERO;
    }

    unchecked {
        // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it.
        int256 xyInt = xInt * yInt;
        if (xyInt / xInt != yInt) {
            revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y);
        }

        // The product must not be negative, since complex numbers are not supported.
        if (xyInt < 0) {
            revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y);
        }

        // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
        // during multiplication. See the comments in {Common.sqrt}.
        uint256 resultUint = Common.sqrt(uint256(xyInt));
        result = wrap(int256(resultUint));
    }
}

/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The SD59x18 number for which to calculate the inverse.
/// @return result The inverse as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(uUNIT_SQUARED / x.unwrap());
}

/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(SD59x18 x) pure returns (SD59x18 result) {
    // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
    // {log2} can return is ~195_205294292027477728.
    result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
}

/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < 0) {
        revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
    }

    // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}.
    // prettier-ignore
    assembly ("memory-safe") {
        switch x
        case 1 { result := mul(uUNIT, sub(0, 18)) }
        case 10 { result := mul(uUNIT, sub(1, 18)) }
        case 100 { result := mul(uUNIT, sub(2, 18)) }
        case 1000 { result := mul(uUNIT, sub(3, 18)) }
        case 10000 { result := mul(uUNIT, sub(4, 18)) }
        case 100000 { result := mul(uUNIT, sub(5, 18)) }
        case 1000000 { result := mul(uUNIT, sub(6, 18)) }
        case 10000000 { result := mul(uUNIT, sub(7, 18)) }
        case 100000000 { result := mul(uUNIT, sub(8, 18)) }
        case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
        case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
        case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
        case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
        case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
        case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
        case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
        case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
        case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
        case 1000000000000000000 { result := 0 }
        case 10000000000000000000 { result := uUNIT }
        case 100000000000000000000 { result := mul(uUNIT, 2) }
        case 1000000000000000000000 { result := mul(uUNIT, 3) }
        case 10000000000000000000000 { result := mul(uUNIT, 4) }
        case 100000000000000000000000 { result := mul(uUNIT, 5) }
        case 1000000000000000000000000 { result := mul(uUNIT, 6) }
        case 10000000000000000000000000 { result := mul(uUNIT, 7) }
        case 100000000000000000000000000 { result := mul(uUNIT, 8) }
        case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
        case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
        case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
        case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
        case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
        case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
        case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
        case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
        case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
        case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
        case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
        case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
        case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
        case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
        case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
        case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
        case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
        case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
        case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
        case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
        case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
        case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
        case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
        case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
        case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
        case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
        case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
        case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
        case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
        case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
        case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
        case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
        case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
        case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
        case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
        case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
        case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
        case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
        case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
        case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
        case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
        case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
        default { result := uMAX_SD59x18 }
    }

    if (result.unwrap() == uMAX_SD59x18) {
        unchecked {
            // Inline the fixed-point division to save gas.
            result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
        }
    }
}

/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation.
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x > 0
///
/// @param x The SD59x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt <= 0) {
        revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
    }

    unchecked {
        int256 sign;
        if (xInt >= uUNIT) {
            sign = 1;
        } else {
            sign = -1;
            // Inline the fixed-point inversion to save gas.
            xInt = uUNIT_SQUARED / xInt;
        }

        // Calculate the integer part of the logarithm.
        uint256 n = Common.msb(uint256(xInt / uUNIT));

        // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow
        // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1.
        int256 resultInt = int256(n) * uUNIT;

        // Calculate $y = x * 2^{-n}$.
        int256 y = xInt >> n;

        // If y is the unit number, the fractional part is zero.
        if (y == uUNIT) {
            return wrap(resultInt * sign);
        }

        // Calculate the fractional part via the iterative approximation.
        // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
        int256 DOUBLE_UNIT = 2e18;
        for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
            y = (y * y) / uUNIT;

            // Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
            if (y >= DOUBLE_UNIT) {
                // Add the 2^{-m} factor to the logarithm.
                resultInt = resultInt + delta;

                // Halve y, which corresponds to z/2 in the Wikipedia article.
                y >>= 1;
            }
        }
        resultInt *= sign;
        result = wrap(resultInt);
    }
}

/// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number.
///
/// @dev Notes:
/// - Refer to the notes in {Common.mulDiv18}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv18}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The result must fit in SD59x18.
///
/// @param x The multiplicand as an SD59x18 number.
/// @param y The multiplier as an SD59x18 number.
/// @return result The product as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();
    if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
        revert Errors.PRBMath_SD59x18_Mul_InputTooSmall();
    }

    // Get hold of the absolute values of x and y.
    uint256 xAbs;
    uint256 yAbs;
    unchecked {
        xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
        yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
    }

    // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18.
    uint256 resultAbs = Common.mulDiv18(xAbs, yAbs);
    if (resultAbs > uint256(uMAX_SD59x18)) {
        revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y);
    }

    // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
    // negative, 0 for positive or zero).
    bool sameSign = (xInt ^ yInt) > -1;

    // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
    unchecked {
        result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
    }
}

/// @notice Raises x to the power of y using the following formula:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}, {log2}, and {mul}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as an SD59x18 number.
/// @param y Exponent to raise x to, as an SD59x18 number
/// @return result x raised to power y, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();

    // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
    if (xInt == 0) {
        return yInt == 0 ? UNIT : ZERO;
    }
    // If x is `UNIT`, the result is always `UNIT`.
    else if (xInt == uUNIT) {
        return UNIT;
    }

    // If y is zero, the result is always `UNIT`.
    if (yInt == 0) {
        return UNIT;
    }
    // If y is `UNIT`, the result is always x.
    else if (yInt == uUNIT) {
        return x;
    }

    // Calculate the result using the formula.
    result = exp2(mul(log2(x), y));
}

/// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {abs} and {Common.mulDiv18}.
/// - The result must fit in SD59x18.
///
/// @param x The base as an SD59x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) {
    uint256 xAbs = uint256(abs(x).unwrap());

    // Calculate the first iteration of the loop in advance.
    uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT);

    // Equivalent to `for(y /= 2; y > 0; y /= 2)`.
    uint256 yAux = y;
    for (yAux >>= 1; yAux > 0; yAux >>= 1) {
        xAbs = Common.mulDiv18(xAbs, xAbs);

        // Equivalent to `y % 2 == 1`.
        if (yAux & 1 > 0) {
            resultAbs = Common.mulDiv18(resultAbs, xAbs);
        }
    }

    // The result must fit in SD59x18.
    if (resultAbs > uint256(uMAX_SD59x18)) {
        revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y);
    }

    unchecked {
        // Is the base negative and the exponent odd? If yes, the result should be negative.
        int256 resultInt = int256(resultAbs);
        bool isNegative = x.unwrap() < 0 && y & 1 == 1;
        if (isNegative) {
            resultInt = -resultInt;
        }
        result = wrap(resultInt);
    }
}

/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - Only the positive root is returned.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x ≥ 0, since complex numbers are not supported.
/// - x ≤ MAX_SD59x18 / UNIT
///
/// @param x The SD59x18 number for which to calculate the square root.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < 0) {
        revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x);
    }
    if (xInt > uMAX_SD59x18 / uUNIT) {
        revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x);
    }

    unchecked {
        // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers.
        // In this case, the two numbers are both the square root.
        uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT));
        result = wrap(int256(resultUint));
    }
}

File 19 of 37 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_SD21x18 } from "../sd21x18/Constants.sol";
import { SD21x18 } from "../sd21x18/ValueType.sol";
import { uMAX_SD59x18 } from "../sd59x18/Constants.sol";
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { uMAX_UD21x18 } from "../ud21x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD21x18 } from "../ud21x18/ValueType.sol";
import { UD60x18 } from "./ValueType.sol";

/// @notice Casts a UD60x18 number into SD1x18.
/// @dev Requirements:
/// - x ≤ uMAX_SD1x18
function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uint256(int256(uMAX_SD1x18))) {
        revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x);
    }
    result = SD1x18.wrap(int64(uint64(xUint)));
}

/// @notice Casts a UD60x18 number into SD21x18.
/// @dev Requirements:
/// - x ≤ uMAX_SD21x18
function intoSD21x18(UD60x18 x) pure returns (SD21x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uint256(int256(uMAX_SD21x18))) {
        revert CastingErrors.PRBMath_UD60x18_IntoSD21x18_Overflow(x);
    }
    result = SD21x18.wrap(int128(uint128(xUint)));
}

/// @notice Casts a UD60x18 number into UD2x18.
/// @dev Requirements:
/// - x ≤ uMAX_UD2x18
function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uMAX_UD2x18) {
        revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x);
    }
    result = UD2x18.wrap(uint64(xUint));
}

/// @notice Casts a UD60x18 number into UD21x18.
/// @dev Requirements:
/// - x ≤ uMAX_UD21x18
function intoUD21x18(UD60x18 x) pure returns (UD21x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uMAX_UD21x18) {
        revert CastingErrors.PRBMath_UD60x18_IntoUD21x18_Overflow(x);
    }
    result = UD21x18.wrap(uint128(xUint));
}

/// @notice Casts a UD60x18 number into SD59x18.
/// @dev Requirements:
/// - x ≤ uMAX_SD59x18
function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uint256(uMAX_SD59x18)) {
        revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x);
    }
    result = SD59x18.wrap(int256(xUint));
}

/// @notice Casts a UD60x18 number into uint128.
/// @dev This is basically an alias for {unwrap}.
function intoUint256(UD60x18 x) pure returns (uint256 result) {
    result = UD60x18.unwrap(x);
}

/// @notice Casts a UD60x18 number into uint128.
/// @dev Requirements:
/// - x ≤ MAX_UINT128
function intoUint128(UD60x18 x) pure returns (uint128 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > MAX_UINT128) {
        revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x);
    }
    result = uint128(xUint);
}

/// @notice Casts a UD60x18 number into uint40.
/// @dev Requirements:
/// - x ≤ MAX_UINT40
function intoUint40(UD60x18 x) pure returns (uint40 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > MAX_UINT40) {
        revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x);
    }
    result = uint40(xUint);
}

/// @notice Alias for {wrap}.
function ud(uint256 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(x);
}

/// @notice Alias for {wrap}.
function ud60x18(uint256 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(x);
}

/// @notice Unwraps a UD60x18 number into uint256.
function unwrap(UD60x18 x) pure returns (uint256 result) {
    result = UD60x18.unwrap(x);
}

/// @notice Wraps a uint256 number into the UD60x18 value type.
function wrap(uint256 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(x);
}

File 20 of 37 : Helpers.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { wrap } from "./Casting.sol";
import { UD60x18 } from "./ValueType.sol";

/// @notice Implements the checked addition operation (+) in the UD60x18 type.
function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() + y.unwrap());
}

/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() & bits);
}

/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() & y.unwrap());
}

/// @notice Implements the equal operation (==) in the UD60x18 type.
function eq(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() == y.unwrap();
}

/// @notice Implements the greater than operation (>) in the UD60x18 type.
function gt(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() > y.unwrap();
}

/// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type.
function gte(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() >= y.unwrap();
}

/// @notice Implements a zero comparison check function in the UD60x18 type.
function isZero(UD60x18 x) pure returns (bool result) {
    // This wouldn't work if x could be negative.
    result = x.unwrap() == 0;
}

/// @notice Implements the left shift operation (<<) in the UD60x18 type.
function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() << bits);
}

/// @notice Implements the lower than operation (<) in the UD60x18 type.
function lt(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() < y.unwrap();
}

/// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type.
function lte(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() <= y.unwrap();
}

/// @notice Implements the checked modulo operation (%) in the UD60x18 type.
function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() % y.unwrap());
}

/// @notice Implements the not equal operation (!=) in the UD60x18 type.
function neq(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() != y.unwrap();
}

/// @notice Implements the NOT (~) bitwise operation in the UD60x18 type.
function not(UD60x18 x) pure returns (UD60x18 result) {
    result = wrap(~x.unwrap());
}

/// @notice Implements the OR (|) bitwise operation in the UD60x18 type.
function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() | y.unwrap());
}

/// @notice Implements the right shift operation (>>) in the UD60x18 type.
function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() >> bits);
}

/// @notice Implements the checked subtraction operation (-) in the UD60x18 type.
function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() - y.unwrap());
}

/// @notice Implements the unchecked addition operation (+) in the UD60x18 type.
function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    unchecked {
        result = wrap(x.unwrap() + y.unwrap());
    }
}

/// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type.
function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    unchecked {
        result = wrap(x.unwrap() - y.unwrap());
    }
}

/// @notice Implements the XOR (^) bitwise operation in the UD60x18 type.
function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() ^ y.unwrap());
}

File 21 of 37 : Math.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { wrap } from "./Casting.sol";
import {
    uEXP_MAX_INPUT,
    uEXP2_MAX_INPUT,
    uHALF_UNIT,
    uLOG2_10,
    uLOG2_E,
    uMAX_UD60x18,
    uMAX_WHOLE_UD60x18,
    UNIT,
    uUNIT,
    uUNIT_SQUARED,
    ZERO
} from "./Constants.sol";
import { UD60x18 } from "./ValueType.sol";

/*//////////////////////////////////////////////////////////////////////////
                            MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Calculates the arithmetic average of x and y using the following formula:
///
/// $$
/// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2)
/// $$
///
/// In English, this is what this formula does:
///
/// 1. AND x and y.
/// 2. Calculate half of XOR x and y.
/// 3. Add the two results together.
///
/// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here:
/// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The arithmetic average as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    uint256 yUint = y.unwrap();
    unchecked {
        result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1));
    }
}

/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x ≤ MAX_WHOLE_UD60x18
///
/// @param x The UD60x18 number to ceil.
/// @return result The smallest whole number greater than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    if (xUint > uMAX_WHOLE_UD60x18) {
        revert Errors.PRBMath_UD60x18_Ceil_Overflow(x);
    }

    assembly ("memory-safe") {
        // Equivalent to `x % UNIT`.
        let remainder := mod(x, uUNIT)

        // Equivalent to `UNIT - remainder`.
        let delta := sub(uUNIT, remainder)

        // Equivalent to `x + remainder > 0 ? delta : 0`.
        result := add(x, mul(delta, gt(remainder, 0)))
    }
}

/// @notice Divides two UD60x18 numbers, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @param x The numerator as a UD60x18 number.
/// @param y The denominator as a UD60x18 number.
/// @return result The quotient as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap()));
}

/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Requirements:
/// - x ≤ 133_084258667509499440
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    // This check prevents values greater than 192e18 from being passed to {exp2}.
    if (xUint > uEXP_MAX_INPUT) {
        revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x);
    }

    unchecked {
        // Inline the fixed-point multiplication to save gas.
        uint256 doubleUnitProduct = xUint * uLOG2_E;
        result = exp2(wrap(doubleUnitProduct / uUNIT));
    }
}

/// @notice Calculates the binary exponent of x using the binary fraction method.
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693
///
/// Requirements:
/// - x < 192e18
/// - The result must fit in UD60x18.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
    if (xUint > uEXP2_MAX_INPUT) {
        revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x);
    }

    // Convert x to the 192.64-bit fixed-point format.
    uint256 x_192x64 = (xUint << 64) / uUNIT;

    // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation.
    result = wrap(Common.exp2(x_192x64));
}

/// @notice Yields the greatest whole number less than or equal to x.
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
/// @param x The UD60x18 number to floor.
/// @return result The greatest whole number less than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(UD60x18 x) pure returns (UD60x18 result) {
    assembly ("memory-safe") {
        // Equivalent to `x % UNIT`.
        let remainder := mod(x, uUNIT)

        // Equivalent to `x - remainder > 0 ? remainder : 0)`.
        result := sub(x, mul(remainder, gt(remainder, 0)))
    }
}

/// @notice Yields the excess beyond the floor of x using the odd function definition.
/// @dev See https://en.wikipedia.org/wiki/Fractional_part.
/// @param x The UD60x18 number to get the fractional part of.
/// @return result The fractional part of x as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function frac(UD60x18 x) pure returns (UD60x18 result) {
    assembly ("memory-safe") {
        result := mod(x, uUNIT)
    }
}

/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down.
///
/// @dev Requirements:
/// - x * y must fit in UD60x18.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    uint256 yUint = y.unwrap();
    if (xUint == 0 || yUint == 0) {
        return ZERO;
    }

    unchecked {
        // Checking for overflow this way is faster than letting Solidity do it.
        uint256 xyUint = xUint * yUint;
        if (xyUint / xUint != yUint) {
            revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y);
        }

        // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
        // during multiplication. See the comments in {Common.sqrt}.
        result = wrap(Common.sqrt(xyUint));
    }
}

/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The UD60x18 number for which to calculate the inverse.
/// @return result The inverse as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(UD60x18 x) pure returns (UD60x18 result) {
    unchecked {
        result = wrap(uUNIT_SQUARED / x.unwrap());
    }
}

/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(UD60x18 x) pure returns (UD60x18 result) {
    unchecked {
        // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
        // {log2} can return is ~196_205294292027477728.
        result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
    }
}

/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    if (xUint < uUNIT) {
        revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
    }

    // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}.
    // prettier-ignore
    assembly ("memory-safe") {
        switch x
        case 1 { result := mul(uUNIT, sub(0, 18)) }
        case 10 { result := mul(uUNIT, sub(1, 18)) }
        case 100 { result := mul(uUNIT, sub(2, 18)) }
        case 1000 { result := mul(uUNIT, sub(3, 18)) }
        case 10000 { result := mul(uUNIT, sub(4, 18)) }
        case 100000 { result := mul(uUNIT, sub(5, 18)) }
        case 1000000 { result := mul(uUNIT, sub(6, 18)) }
        case 10000000 { result := mul(uUNIT, sub(7, 18)) }
        case 100000000 { result := mul(uUNIT, sub(8, 18)) }
        case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
        case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
        case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
        case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
        case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
        case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
        case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
        case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
        case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
        case 1000000000000000000 { result := 0 }
        case 10000000000000000000 { result := uUNIT }
        case 100000000000000000000 { result := mul(uUNIT, 2) }
        case 1000000000000000000000 { result := mul(uUNIT, 3) }
        case 10000000000000000000000 { result := mul(uUNIT, 4) }
        case 100000000000000000000000 { result := mul(uUNIT, 5) }
        case 1000000000000000000000000 { result := mul(uUNIT, 6) }
        case 10000000000000000000000000 { result := mul(uUNIT, 7) }
        case 100000000000000000000000000 { result := mul(uUNIT, 8) }
        case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
        case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
        case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
        case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
        case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
        case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
        case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
        case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
        case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
        case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
        case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
        case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
        case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
        case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
        case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
        case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
        case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
        case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
        case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
        case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
        case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
        case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
        case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
        case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
        case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
        case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
        case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
        case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
        case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
        case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
        case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
        case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
        case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
        case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
        case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
        case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
        case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
        case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
        case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
        case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
        case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
        case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) }
        default { result := uMAX_UD60x18 }
    }

    if (result.unwrap() == uMAX_UD60x18) {
        unchecked {
            // Inline the fixed-point division to save gas.
            result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
        }
    }
}

/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x ≥ UNIT
///
/// @param x The UD60x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    if (xUint < uUNIT) {
        revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
    }

    unchecked {
        // Calculate the integer part of the logarithm.
        uint256 n = Common.msb(xUint / uUNIT);

        // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n
        // n is at most 255 and UNIT is 1e18.
        uint256 resultUint = n * uUNIT;

        // Calculate $y = x * 2^{-n}$.
        uint256 y = xUint >> n;

        // If y is the unit number, the fractional part is zero.
        if (y == uUNIT) {
            return wrap(resultUint);
        }

        // Calculate the fractional part via the iterative approximation.
        // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
        uint256 DOUBLE_UNIT = 2e18;
        for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
            y = (y * y) / uUNIT;

            // Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
            if (y >= DOUBLE_UNIT) {
                // Add the 2^{-m} factor to the logarithm.
                resultUint += delta;

                // Halve y, which corresponds to z/2 in the Wikipedia article.
                y >>= 1;
            }
        }
        result = wrap(resultUint);
    }
}

/// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @dev See the documentation in {Common.mulDiv18}.
/// @param x The multiplicand as a UD60x18 number.
/// @param y The multiplier as a UD60x18 number.
/// @return result The product as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap()));
}

/// @notice Raises x to the power of y.
///
/// For $1 \leq x \leq \infty$, the following standard formula is used:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used:
///
/// $$
/// i = \frac{1}{x}
/// w = 2^{log_2{i} * y}
/// x^y = \frac{1}{w}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2} and {mul}.
/// - Returns `UNIT` for 0^0.
/// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    uint256 yUint = y.unwrap();

    // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
    if (xUint == 0) {
        return yUint == 0 ? UNIT : ZERO;
    }
    // If x is `UNIT`, the result is always `UNIT`.
    else if (xUint == uUNIT) {
        return UNIT;
    }

    // If y is zero, the result is always `UNIT`.
    if (yUint == 0) {
        return UNIT;
    }
    // If y is `UNIT`, the result is always x.
    else if (yUint == uUNIT) {
        return x;
    }

    // If x is > UNIT, use the standard formula.
    if (xUint > uUNIT) {
        result = exp2(mul(log2(x), y));
    }
    // Conversely, if x < UNIT, use the equivalent formula.
    else {
        UD60x18 i = wrap(uUNIT_SQUARED / xUint);
        UD60x18 w = exp2(mul(log2(i), y));
        result = wrap(uUNIT_SQUARED / w.unwrap());
    }
}

/// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - The result must fit in UD60x18.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) {
    // Calculate the first iteration of the loop in advance.
    uint256 xUint = x.unwrap();
    uint256 resultUint = y & 1 > 0 ? xUint : uUNIT;

    // Equivalent to `for(y /= 2; y > 0; y /= 2)`.
    for (y >>= 1; y > 0; y >>= 1) {
        xUint = Common.mulDiv18(xUint, xUint);

        // Equivalent to `y % 2 == 1`.
        if (y & 1 > 0) {
            resultUint = Common.mulDiv18(resultUint, xUint);
        }
    }
    result = wrap(resultUint);
}

/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x ≤ MAX_UD60x18 / UNIT
///
/// @param x The UD60x18 number for which to calculate the square root.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    unchecked {
        if (xUint > uMAX_UD60x18 / uUNIT) {
            revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x);
        }
        // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers.
        // In this case, the two numbers are both the square root.
        result = wrap(Common.sqrt(xUint * uUNIT));
    }
}

File 22 of 37 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD59x18 } from "./ValueType.sol";

/// @notice Thrown when taking the absolute value of `MIN_SD59x18`.
error PRBMath_SD59x18_Abs_MinSD59x18();

/// @notice Thrown when ceiling a number overflows SD59x18.
error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x);

/// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMath_SD59x18_Convert_Overflow(int256 x);

/// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMath_SD59x18_Convert_Underflow(int256 x);

/// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`.
error PRBMath_SD59x18_Div_InputTooSmall();

/// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18.
error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y);

/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x);

/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x);

/// @notice Thrown when flooring a number underflows SD59x18.
error PRBMath_SD59x18_Floor_Underflow(SD59x18 x);

/// @notice Thrown when taking the geometric mean of two numbers and their product is negative.
error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y);

/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18.
error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in SD21x18.
error PRBMath_SD59x18_IntoSD21x18_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in SD21x18.
error PRBMath_SD59x18_IntoSD21x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD21x18.
error PRBMath_SD59x18_IntoUD21x18_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD21x18.
error PRBMath_SD59x18_IntoUD21x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD60x18.
error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint256.
error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x);

/// @notice Thrown when taking the logarithm of a number less than or equal to zero.
error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x);

/// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`.
error PRBMath_SD59x18_Mul_InputTooSmall();

/// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y);

/// @notice Thrown when raising a number to a power and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y);

/// @notice Thrown when taking the square root of a negative number.
error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x);

/// @notice Thrown when the calculating the square root overflows SD59x18.
error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);

File 23 of 37 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD1x18 } from "./ValueType.sol";

/// @dev Euler's number as an SD1x18 number.
SD1x18 constant E = SD1x18.wrap(2_718281828459045235);

/// @dev The maximum value an SD1x18 number can have.
int64 constant uMAX_SD1x18 = 9_223372036854775807;
SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18);

/// @dev The minimum value an SD1x18 number can have.
int64 constant uMIN_SD1x18 = -9_223372036854775808;
SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18);

/// @dev PI as an SD1x18 number.
SD1x18 constant PI = SD1x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of SD1x18.
SD1x18 constant UNIT = SD1x18.wrap(1e18);
int64 constant uUNIT = 1e18;

File 24 of 37 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;

/// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract
/// storage.
type SD1x18 is int64;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD59x18,
    Casting.intoUD60x18,
    Casting.intoUint128,
    Casting.intoUint256,
    Casting.intoUint40,
    Casting.unwrap
} for SD1x18 global;

File 25 of 37 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD21x18 } from "./ValueType.sol";

/// @dev Euler's number as an SD21x18 number.
SD21x18 constant E = SD21x18.wrap(2_718281828459045235);

/// @dev The maximum value an SD21x18 number can have.
int128 constant uMAX_SD21x18 = 170141183460469231731_687303715884105727;
SD21x18 constant MAX_SD21x18 = SD21x18.wrap(uMAX_SD21x18);

/// @dev The minimum value an SD21x18 number can have.
int128 constant uMIN_SD21x18 = -170141183460469231731_687303715884105728;
SD21x18 constant MIN_SD21x18 = SD21x18.wrap(uMIN_SD21x18);

/// @dev PI as an SD21x18 number.
SD21x18 constant PI = SD21x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of SD21x18.
SD21x18 constant UNIT = SD21x18.wrap(1e18);
int128 constant uUNIT = 1e18;

File 26 of 37 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;

/// @notice The signed 21.18-decimal fixed-point number representation, which can have up to 21 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int128. This is useful when end users want to use int128 to save gas, e.g. with tight variable packing in contract
/// storage.
type SD21x18 is int128;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD59x18,
    Casting.intoUD60x18,
    Casting.intoUint128,
    Casting.intoUint256,
    Casting.intoUint40,
    Casting.unwrap
} for SD21x18 global;

File 27 of 37 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD21x18 } from "./ValueType.sol";

/// @dev Euler's number as a UD21x18 number.
UD21x18 constant E = UD21x18.wrap(2_718281828459045235);

/// @dev The maximum value a UD21x18 number can have.
uint128 constant uMAX_UD21x18 = 340282366920938463463_374607431768211455;
UD21x18 constant MAX_UD21x18 = UD21x18.wrap(uMAX_UD21x18);

/// @dev PI as a UD21x18 number.
UD21x18 constant PI = UD21x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of UD21x18.
uint256 constant uUNIT = 1e18;
UD21x18 constant UNIT = UD21x18.wrap(1e18);

File 28 of 37 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;

/// @notice The unsigned 21.18-decimal fixed-point number representation, which can have up to 21 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type uint128. This is useful when end users want to use uint128 to save gas, e.g. with tight variable packing in contract
/// storage.
type UD21x18 is uint128;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD59x18,
    Casting.intoUD60x18,
    Casting.intoUint128,
    Casting.intoUint256,
    Casting.intoUint40,
    Casting.unwrap
} for UD21x18 global;

File 29 of 37 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD59x18 } from "./ValueType.sol";

// NOTICE: the "u" prefix stands for "unwrapped".

/// @dev Euler's number as an SD59x18 number.
SD59x18 constant E = SD59x18.wrap(2_718281828459045235);

/// @dev The maximum input permitted in {exp}.
int256 constant uEXP_MAX_INPUT = 133_084258667509499440;
SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT);

/// @dev Any value less than this returns 0 in {exp}.
int256 constant uEXP_MIN_THRESHOLD = -41_446531673892822322;
SD59x18 constant EXP_MIN_THRESHOLD = SD59x18.wrap(uEXP_MIN_THRESHOLD);

/// @dev The maximum input permitted in {exp2}.
int256 constant uEXP2_MAX_INPUT = 192e18 - 1;
SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT);

/// @dev Any value less than this returns 0 in {exp2}.
int256 constant uEXP2_MIN_THRESHOLD = -59_794705707972522261;
SD59x18 constant EXP2_MIN_THRESHOLD = SD59x18.wrap(uEXP2_MIN_THRESHOLD);

/// @dev Half the UNIT number.
int256 constant uHALF_UNIT = 0.5e18;
SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT);

/// @dev $log_2(10)$ as an SD59x18 number.
int256 constant uLOG2_10 = 3_321928094887362347;
SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10);

/// @dev $log_2(e)$ as an SD59x18 number.
int256 constant uLOG2_E = 1_442695040888963407;
SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E);

/// @dev The maximum value an SD59x18 number can have.
int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967;
SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18);

/// @dev The maximum whole value an SD59x18 number can have.
int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18);

/// @dev The minimum value an SD59x18 number can have.
int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968;
SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18);

/// @dev The minimum whole value an SD59x18 number can have.
int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18);

/// @dev PI as an SD59x18 number.
SD59x18 constant PI = SD59x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of SD59x18.
int256 constant uUNIT = 1e18;
SD59x18 constant UNIT = SD59x18.wrap(1e18);

/// @dev The unit number squared.
int256 constant uUNIT_SQUARED = 1e36;
SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED);

/// @dev Zero as an SD59x18 number.
SD59x18 constant ZERO = SD59x18.wrap(0);

File 30 of 37 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD60x18 } from "./ValueType.sol";

/// @notice Thrown when ceiling a number overflows UD60x18.
error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x);

/// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18.
error PRBMath_UD60x18_Convert_Overflow(uint256 x);

/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x);

/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x);

/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18.
error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD21x18.
error PRBMath_UD60x18_IntoSD21x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18.
error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD21x18.
error PRBMath_UD60x18_IntoUD21x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x);

/// @notice Thrown when taking the logarithm of a number less than UNIT.
error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x);

/// @notice Thrown when calculating the square root overflows UD60x18.
error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);

File 31 of 37 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD60x18 } from "./ValueType.sol";

// NOTICE: the "u" prefix stands for "unwrapped".

/// @dev Euler's number as a UD60x18 number.
UD60x18 constant E = UD60x18.wrap(2_718281828459045235);

/// @dev The maximum input permitted in {exp}.
uint256 constant uEXP_MAX_INPUT = 133_084258667509499440;
UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT);

/// @dev The maximum input permitted in {exp2}.
uint256 constant uEXP2_MAX_INPUT = 192e18 - 1;
UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT);

/// @dev Half the UNIT number.
uint256 constant uHALF_UNIT = 0.5e18;
UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT);

/// @dev $log_2(10)$ as a UD60x18 number.
uint256 constant uLOG2_10 = 3_321928094887362347;
UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10);

/// @dev $log_2(e)$ as a UD60x18 number.
uint256 constant uLOG2_E = 1_442695040888963407;
UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E);

/// @dev The maximum value a UD60x18 number can have.
uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935;
UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18);

/// @dev The maximum whole value a UD60x18 number can have.
uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000;
UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18);

/// @dev PI as a UD60x18 number.
UD60x18 constant PI = UD60x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of UD60x18.
uint256 constant uUNIT = 1e18;
UD60x18 constant UNIT = UD60x18.wrap(uUNIT);

/// @dev The unit number squared.
uint256 constant uUNIT_SQUARED = 1e36;
UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED);

/// @dev Zero as a UD60x18 number.
UD60x18 constant ZERO = UD60x18.wrap(0);

File 32 of 37 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as CastingErrors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD1x18 } from "./ValueType.sol";

/// @notice Casts an SD1x18 number into SD59x18.
/// @dev There is no overflow check because SD1x18 ⊆ SD59x18.
function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(int256(SD1x18.unwrap(x)));
}

/// @notice Casts an SD1x18 number into UD60x18.
/// @dev Requirements:
/// - x ≥ 0
function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x);
    }
    result = UD60x18.wrap(uint64(xInt));
}

/// @notice Casts an SD1x18 number into uint128.
/// @dev Requirements:
/// - x ≥ 0
function intoUint128(SD1x18 x) pure returns (uint128 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x);
    }
    result = uint128(uint64(xInt));
}

/// @notice Casts an SD1x18 number into uint256.
/// @dev Requirements:
/// - x ≥ 0
function intoUint256(SD1x18 x) pure returns (uint256 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x);
    }
    result = uint256(uint64(xInt));
}

/// @notice Casts an SD1x18 number into uint40.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ MAX_UINT40
function intoUint40(SD1x18 x) pure returns (uint40 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x);
    }
    if (xInt > int64(uint64(Common.MAX_UINT40))) {
        revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x);
    }
    result = uint40(uint64(xInt));
}

/// @notice Alias for {wrap}.
function sd1x18(int64 x) pure returns (SD1x18 result) {
    result = SD1x18.wrap(x);
}

/// @notice Unwraps an SD1x18 number into int64.
function unwrap(SD1x18 x) pure returns (int64 result) {
    result = SD1x18.unwrap(x);
}

/// @notice Wraps an int64 number into SD1x18.
function wrap(int64 x) pure returns (SD1x18 result) {
    result = SD1x18.wrap(x);
}

File 33 of 37 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as CastingErrors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD21x18 } from "./ValueType.sol";

/// @notice Casts an SD21x18 number into SD59x18.
/// @dev There is no overflow check because SD21x18 ⊆ SD59x18.
function intoSD59x18(SD21x18 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(int256(SD21x18.unwrap(x)));
}

/// @notice Casts an SD21x18 number into UD60x18.
/// @dev Requirements:
/// - x ≥ 0
function intoUD60x18(SD21x18 x) pure returns (UD60x18 result) {
    int128 xInt = SD21x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD21x18_ToUD60x18_Underflow(x);
    }
    result = UD60x18.wrap(uint128(xInt));
}

/// @notice Casts an SD21x18 number into uint128.
/// @dev Requirements:
/// - x ≥ 0
function intoUint128(SD21x18 x) pure returns (uint128 result) {
    int128 xInt = SD21x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD21x18_ToUint128_Underflow(x);
    }
    result = uint128(xInt);
}

/// @notice Casts an SD21x18 number into uint256.
/// @dev Requirements:
/// - x ≥ 0
function intoUint256(SD21x18 x) pure returns (uint256 result) {
    int128 xInt = SD21x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD21x18_ToUint256_Underflow(x);
    }
    result = uint256(uint128(xInt));
}

/// @notice Casts an SD21x18 number into uint40.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ MAX_UINT40
function intoUint40(SD21x18 x) pure returns (uint40 result) {
    int128 xInt = SD21x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD21x18_ToUint40_Underflow(x);
    }
    if (xInt > int128(uint128(Common.MAX_UINT40))) {
        revert CastingErrors.PRBMath_SD21x18_ToUint40_Overflow(x);
    }
    result = uint40(uint128(xInt));
}

/// @notice Alias for {wrap}.
function sd21x18(int128 x) pure returns (SD21x18 result) {
    result = SD21x18.wrap(x);
}

/// @notice Unwraps an SD21x18 number into int128.
function unwrap(SD21x18 x) pure returns (int128 result) {
    result = SD21x18.unwrap(x);
}

/// @notice Wraps an int128 number into SD21x18.
function wrap(int128 x) pure returns (SD21x18 result) {
    result = SD21x18.wrap(x);
}

File 34 of 37 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { UD21x18 } from "./ValueType.sol";

/// @notice Casts a UD21x18 number into SD59x18.
/// @dev There is no overflow check because UD21x18 ⊆ SD59x18.
function intoSD59x18(UD21x18 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(int256(uint256(UD21x18.unwrap(x))));
}

/// @notice Casts a UD21x18 number into UD60x18.
/// @dev There is no overflow check because UD21x18 ⊆ UD60x18.
function intoUD60x18(UD21x18 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(UD21x18.unwrap(x));
}

/// @notice Casts a UD21x18 number into uint128.
/// @dev This is basically an alias for {unwrap}.
function intoUint128(UD21x18 x) pure returns (uint128 result) {
    result = UD21x18.unwrap(x);
}

/// @notice Casts a UD21x18 number into uint256.
/// @dev There is no overflow check because UD21x18 ⊆ uint256.
function intoUint256(UD21x18 x) pure returns (uint256 result) {
    result = uint256(UD21x18.unwrap(x));
}

/// @notice Casts a UD21x18 number into uint40.
/// @dev Requirements:
/// - x ≤ MAX_UINT40
function intoUint40(UD21x18 x) pure returns (uint40 result) {
    uint128 xUint = UD21x18.unwrap(x);
    if (xUint > uint128(Common.MAX_UINT40)) {
        revert Errors.PRBMath_UD21x18_IntoUint40_Overflow(x);
    }
    result = uint40(xUint);
}

/// @notice Alias for {wrap}.
function ud21x18(uint128 x) pure returns (UD21x18 result) {
    result = UD21x18.wrap(x);
}

/// @notice Unwrap a UD21x18 number into uint128.
function unwrap(UD21x18 x) pure returns (uint128 result) {
    result = UD21x18.unwrap(x);
}

/// @notice Wraps a uint128 number into UD21x18.
function wrap(uint128 x) pure returns (UD21x18 result) {
    result = UD21x18.wrap(x);
}

File 35 of 37 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD1x18 } from "./ValueType.sol";

/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in UD60x18.
error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in uint128.
error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in uint256.
error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x);

/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);

File 36 of 37 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD21x18 } from "./ValueType.sol";

/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in uint128.
error PRBMath_SD21x18_ToUint128_Underflow(SD21x18 x);

/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in UD60x18.
error PRBMath_SD21x18_ToUD60x18_Underflow(SD21x18 x);

/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in uint256.
error PRBMath_SD21x18_ToUint256_Underflow(SD21x18 x);

/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in uint40.
error PRBMath_SD21x18_ToUint40_Overflow(SD21x18 x);

/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in uint40.
error PRBMath_SD21x18_ToUint40_Underflow(SD21x18 x);

File 37 of 37 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD21x18 } from "./ValueType.sol";

/// @notice Thrown when trying to cast a UD21x18 number that doesn't fit in uint40.
error PRBMath_UD21x18_IntoUint40_Overflow(UD21x18 x);

Settings
{
  "remappings": [
    "@arbitrum/=node_modules/@arbitrum/",
    "@chainlink/=node_modules/@chainlink/",
    "@eth-optimism/=node_modules/@eth-optimism/",
    "@offchainlabs/=node_modules/@offchainlabs/",
    "@openzeppelin/=node_modules/@openzeppelin/",
    "@prb/=node_modules/@prb/",
    "@sablier/=node_modules/@sablier/",
    "@scroll-tech/=node_modules/@scroll-tech/",
    "@zksync/=node_modules/@zksync/",
    "forge-std/=node_modules/forge-std/",
    "solady/=node_modules/solady/",
    "solarray/=node_modules/solarray/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 500
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "shanghai",
  "viaIR": true
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"uint40","name":"cliffTime","type":"uint40"},{"internalType":"uint40","name":"endTime","type":"uint40"}],"name":"SablierHelpers_CliffTimeNotLessThanEndTime","type":"error"},{"inputs":[{"internalType":"uint128","name":"cliffUnlockAmount","type":"uint128"}],"name":"SablierHelpers_CliffTimeZeroUnlockAmountNotZero","type":"error"},{"inputs":[{"internalType":"address","name":"nativeToken","type":"address"}],"name":"SablierHelpers_CreateNativeToken","type":"error"},{"inputs":[{"internalType":"uint128","name":"depositAmount","type":"uint128"},{"internalType":"uint128","name":"segmentAmountsSum","type":"uint128"}],"name":"SablierHelpers_DepositAmountNotEqualToSegmentAmountsSum","type":"error"},{"inputs":[{"internalType":"uint128","name":"depositAmount","type":"uint128"},{"internalType":"uint128","name":"trancheAmountsSum","type":"uint128"}],"name":"SablierHelpers_DepositAmountNotEqualToTrancheAmountsSum","type":"error"},{"inputs":[],"name":"SablierHelpers_DepositAmountZero","type":"error"},{"inputs":[{"internalType":"uint40","name":"endTime","type":"uint40"},{"internalType":"uint40","name":"lastSegmentTimestamp","type":"uint40"}],"name":"SablierHelpers_EndTimeNotEqualToLastSegmentTimestamp","type":"error"},{"inputs":[{"internalType":"uint40","name":"endTime","type":"uint40"},{"internalType":"uint40","name":"lastTrancheTimestamp","type":"uint40"}],"name":"SablierHelpers_EndTimeNotEqualToLastTrancheTimestamp","type":"error"},{"inputs":[],"name":"SablierHelpers_SegmentCountZero","type":"error"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint40","name":"previousTimestamp","type":"uint40"},{"internalType":"uint40","name":"currentTimestamp","type":"uint40"}],"name":"SablierHelpers_SegmentTimestampsNotOrdered","type":"error"},{"inputs":[],"name":"SablierHelpers_SenderZeroAddress","type":"error"},{"inputs":[{"internalType":"uint256","name":"shapeLength","type":"uint256"}],"name":"SablierHelpers_ShapeExceeds32Bytes","type":"error"},{"inputs":[{"internalType":"uint40","name":"startTime","type":"uint40"},{"internalType":"uint40","name":"cliffTime","type":"uint40"}],"name":"SablierHelpers_StartTimeNotLessThanCliffTime","type":"error"},{"inputs":[{"internalType":"uint40","name":"startTime","type":"uint40"},{"internalType":"uint40","name":"endTime","type":"uint40"}],"name":"SablierHelpers_StartTimeNotLessThanEndTime","type":"error"},{"inputs":[{"internalType":"uint40","name":"startTime","type":"uint40"},{"internalType":"uint40","name":"firstSegmentTimestamp","type":"uint40"}],"name":"SablierHelpers_StartTimeNotLessThanFirstSegmentTimestamp","type":"error"},{"inputs":[{"internalType":"uint40","name":"startTime","type":"uint40"},{"internalType":"uint40","name":"firstTrancheTimestamp","type":"uint40"}],"name":"SablierHelpers_StartTimeNotLessThanFirstTrancheTimestamp","type":"error"},{"inputs":[],"name":"SablierHelpers_StartTimeZero","type":"error"},{"inputs":[],"name":"SablierHelpers_TrancheCountZero","type":"error"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint40","name":"previousTimestamp","type":"uint40"},{"internalType":"uint40","name":"currentTimestamp","type":"uint40"}],"name":"SablierHelpers_TrancheTimestampsNotOrdered","type":"error"},{"inputs":[{"internalType":"uint128","name":"depositAmount","type":"uint128"},{"internalType":"uint128","name":"startUnlockAmount","type":"uint128"},{"internalType":"uint128","name":"cliffUnlockAmount","type":"uint128"}],"name":"SablierHelpers_UnlockAmountsSumTooHigh","type":"error"},{"inputs":[{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"UD2x18","name":"exponent","type":"uint64"},{"internalType":"uint40","name":"duration","type":"uint40"}],"internalType":"struct LockupDynamic.SegmentWithDuration[]","name":"segmentsWithDuration","type":"tuple[]"},{"internalType":"uint40","name":"startTime","type":"uint40"}],"name":"calculateSegmentTimestamps","outputs":[{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"UD2x18","name":"exponent","type":"uint64"},{"internalType":"uint40","name":"timestamp","type":"uint40"}],"internalType":"struct LockupDynamic.Segment[]","name":"segmentsWithTimestamps","type":"tuple[]"}],"stateMutability":"pure","type":"function"},{"inputs":[{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint40","name":"duration","type":"uint40"}],"internalType":"struct LockupTranched.TrancheWithDuration[]","name":"tranchesWithDuration","type":"tuple[]"},{"internalType":"uint40","name":"startTime","type":"uint40"}],"name":"calculateTrancheTimestamps","outputs":[{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint40","name":"timestamp","type":"uint40"}],"internalType":"struct LockupTranched.Tranche[]","name":"tranchesWithTimestamps","type":"tuple[]"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"components":[{"internalType":"uint40","name":"start","type":"uint40"},{"internalType":"uint40","name":"end","type":"uint40"}],"internalType":"struct Lockup.Timestamps","name":"timestamps","type":"tuple"},{"internalType":"uint128","name":"depositAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"UD2x18","name":"exponent","type":"uint64"},{"internalType":"uint40","name":"timestamp","type":"uint40"}],"internalType":"struct LockupDynamic.Segment[]","name":"segments","type":"tuple[]"},{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"nativeToken","type":"address"},{"internalType":"string","name":"shape","type":"string"}],"name":"checkCreateLD","outputs":[],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"components":[{"internalType":"uint40","name":"start","type":"uint40"},{"internalType":"uint40","name":"end","type":"uint40"}],"internalType":"struct Lockup.Timestamps","name":"timestamps","type":"tuple"},{"internalType":"uint40","name":"cliffTime","type":"uint40"},{"internalType":"uint128","name":"depositAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"start","type":"uint128"},{"internalType":"uint128","name":"cliff","type":"uint128"}],"internalType":"struct LockupLinear.UnlockAmounts","name":"unlockAmounts","type":"tuple"},{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"nativeToken","type":"address"},{"internalType":"string","name":"shape","type":"string"}],"name":"checkCreateLL","outputs":[],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"components":[{"internalType":"uint40","name":"start","type":"uint40"},{"internalType":"uint40","name":"end","type":"uint40"}],"internalType":"struct Lockup.Timestamps","name":"timestamps","type":"tuple"},{"internalType":"uint128","name":"depositAmount","type":"uint128"},{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint40","name":"timestamp","type":"uint40"}],"internalType":"struct LockupTranched.Tranche[]","name":"tranches","type":"tuple[]"},{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"nativeToken","type":"address"},{"internalType":"string","name":"shape","type":"string"}],"name":"checkCreateLT","outputs":[],"stateMutability":"pure","type":"function"}]

60808060405234601957610e0c908161001e823930815050f35b5f80fdfe60806040526004361015610011575f80fd5b5f3560e01c80630e1c82bc1461083a578063144120791461067d578063179cab3e14610455578063f0b95e091461023a5763f89d584114610050575f80fd5b61014036600319011261023657610065610a34565b61006e36610b16565b6064359164ffffffffff831680930361023657608435916001600160801b038316938484036102365760403660a3190112610236576100ab610a76565b9260a4356001600160801b038116810361023657845260c435946001600160801b0386168603610236576020850195865260e4356001600160a01b03811681036102365761010435906001600160a01b038216820361023657610124359367ffffffffffffffff851161023657610129610139953690600401610c08565b9364ffffffffff88511691610d1e565b801561020d5764ffffffffff825116818110156101f8575064ffffffffff60208301511690818110156101e35750505b64ffffffffff6020818351169201511690818110156101ce575050826001600160801b0361019e818451168286511690610db6565b16116101a657005b6001600160801b038091511691511691630b4ba30d60e01b5f5260045260245260445260645ffd5b630517114360e01b5f5260045260245260445ffd5b633717194760e21b5f5260045260245260445ffd5b63da94737160e01b5f5260045260245260445ffd5b506001600160801b03835116806102245750610169565b63150ee1a560e21b5f5260045260245ffd5b5f80fd5b60403660031901126102365760043567ffffffffffffffff8111610236573660238201121561023657610277903690602481600401359101610c5a565b61027f610af0565b9080519061029461028f83610b80565b610aca565b82815292601f196102a484610b80565b015f5b8181106104305750506001600160801b036102c183610ce9565b5151169064ffffffffff67ffffffffffffffff60206102df86610ce9565b51015116918160406102f087610ce9565b510151160116906102ff610aaa565b9283526020830152604082015261031584610ce9565b5261031f83610ce9565b5060015b8281106103a057836040518091602082016020835281518091526020604084019201905f5b818110610356575050500390f35b919350916020606060019264ffffffffff604088516001600160801b03815116845267ffffffffffffffff8682015116868501520151166040820152019401910191849392610348565b806001600160801b036103b560019385610d0a565b51511667ffffffffffffffff60206103cd8487610d0a565b5101511664ffffffffff8060406103e75f1987018b610d0a565b510151168160406103f8878a610d0a565b51015116011690610407610aaa565b9283526020830152604082015261041e8287610d0a565b526104298186610d0a565b5001610323565b60209061043b610aaa565b5f81525f838201525f6040820152828289010152016102a7565b6101003660031901126102365761046a610a34565b61047336610b16565b61047b610b56565b9160843567ffffffffffffffff81116102365736602382011215610236576104ad903690602481600401359101610c5a565b906104b6610a4a565b906104bf610a60565b60e4359267ffffffffffffffff8411610236576104e36104f4943690600401610c08565b928764ffffffffff88511691610d1e565b805191821561066e5764ffffffffff81511664ffffffffff604061051785610ce9565b51015116111561063f5760200180515f198401919064ffffffffff1684831161062b5764ffffffffff604061054c8587610d0a565b51015116036105fb57505f9283928392505b81831061059157856001600160801b03808716911681810361057c57005b634b52f2ff60e01b5f5260045260245260445ffd5b909192936105b4906001600160801b036105ab8685610d0a565b51511690610db6565b9364ffffffffff8060406105c88786610d0a565b510151169116808211156105e2575092600101919061055e565b84637d6d1f3360e01b5f5260045260245260445260645ffd5b61061164ffffffffff9283604093511694610d0a565b510151169063474537ff60e11b5f5260045260245260445ffd5b634e487b7160e01b5f52601160045260245ffd5b604061065464ffffffffff8093511693610ce9565b5101511690630f500ccb60e41b5f5260045260245260445ffd5b630c8936c160e31b5f5260045ffd5b60403660031901126102365760043567ffffffffffffffff81116102365736602382011215610236576106ba903690602481600401359101610b98565b6106c2610af0565b908051906106d261028f83610b80565b82815292601f196106e284610b80565b015f5b81811061081b57505064ffffffffff6001600160801b0361070584610ce9565b5151169181602061071586610ce9565b510151160116610723610a76565b918252602082015261073484610ce9565b5261073e83610ce9565b5060015b8281106107aa57836040518091602082016020835281518091526020604084019201905f5b818110610775575050500390f35b825180516001600160801b0316855260209081015164ffffffffff168186015286955060409094019390920191600101610767565b806001600160801b036107bf60019385610d0a565b51511664ffffffffff8060206107d85f1986018a610d0a565b510151168160206107e98689610d0a565b5101511601166107f7610a76565b91825260208201526108098287610d0a565b526108148186610d0a565b5001610742565b602090610826610a76565b5f81525f83820152828289010152016106e5565b6101003660031901126102365761084f610a34565b61085836610b16565b610860610b56565b9160843567ffffffffffffffff8111610236573660238201121561023657610892903690602481600401359101610b98565b9061089b610a4a565b906108a4610a60565b60e4359267ffffffffffffffff8411610236576104e36108c8943690600401610c08565b8051918215610a255764ffffffffff81511664ffffffffff60206108eb85610ce9565b5101511611156109f65760200180515f198401919064ffffffffff1684831161062b5764ffffffffff60206109208587610d0a565b51015116036109c657505f9283928392505b81831061096557856001600160801b03808716911681810361095057005b6359b0e8dd60e01b5f5260045260245260445ffd5b9091929361097f906001600160801b036105ab8685610d0a565b9364ffffffffff8060206109938786610d0a565b510151169116808211156109ad5750926001019190610932565b846373a9cd5f60e01b5f5260045260245260445260645ffd5b6109dc64ffffffffff9283602093511694610d0a565b5101511690632828b1df60e11b5f5260045260245260445ffd5b6020610a0b64ffffffffff8093511693610ce9565b5101511690632719805f60e21b5f5260045260245260445ffd5b63ff743f9160e01b5f5260045ffd5b600435906001600160a01b038216820361023657565b60a435906001600160a01b038216820361023657565b60c435906001600160a01b038216820361023657565b604051906040820182811067ffffffffffffffff821117610a9657604052565b634e487b7160e01b5f52604160045260245ffd5b604051906060820182811067ffffffffffffffff821117610a9657604052565b6040519190601f01601f1916820167ffffffffffffffff811183821017610a9657604052565b6024359064ffffffffff8216820361023657565b359064ffffffffff8216820361023657565b604090602319011261023657610b2a610a76565b9060243564ffffffffff8116810361023657825260443564ffffffffff81168103610236576020830152565b606435906001600160801b038216820361023657565b35906001600160801b038216820361023657565b67ffffffffffffffff8111610a965760051b60200190565b929192610ba761028f83610b80565b93828552602085019260061b82019181831161023657925b828410610bcc5750505050565b604084830312610236576020604091610be3610a76565b610bec87610b6c565b8152610bf9838801610b04565b83820152815201930192610bbf565b81601f820112156102365780359067ffffffffffffffff8211610a9657610c38601f8301601f1916602001610aca565b928284526020838301011161023657815f926020809301838601378301015290565b929192610c6961028f83610b80565b93828552606060208601930282019181831161023657925b828410610c8e5750505050565b60608483031261023657610ca0610aaa565b90610caa85610b6c565b825260208501359067ffffffffffffffff821682036102365782602092836060950152610cd960408801610b04565b6040820152815201930192610c81565b805115610cf65760200190565b634e487b7160e01b5f52603260045260245ffd5b8051821015610cf65760209160051b010190565b6001600160a01b031615610da7576001600160801b031615610d985764ffffffffff1615610d8a576001600160a01b0391821691168114610d7857505160208111610d665750565b631f68a77160e21b5f5260045260245ffd5b635d66c1bb60e11b5f5260045260245ffd5b62fcdef560e71b5f5260045ffd5b6359d1976560e11b5f5260045ffd5b63feb974b360e01b5f5260045ffd5b906001600160801b03809116911601906001600160801b03821161062b5756fea2646970667358221220f03a5488d408a1cdc9b7d44cd370a129774920cf2a8fd9fdcfb3a93e6595d55a64736f6c634300081d0033

Deployed Bytecode

0x60806040526004361015610011575f80fd5b5f3560e01c80630e1c82bc1461083a578063144120791461067d578063179cab3e14610455578063f0b95e091461023a5763f89d584114610050575f80fd5b61014036600319011261023657610065610a34565b61006e36610b16565b6064359164ffffffffff831680930361023657608435916001600160801b038316938484036102365760403660a3190112610236576100ab610a76565b9260a4356001600160801b038116810361023657845260c435946001600160801b0386168603610236576020850195865260e4356001600160a01b03811681036102365761010435906001600160a01b038216820361023657610124359367ffffffffffffffff851161023657610129610139953690600401610c08565b9364ffffffffff88511691610d1e565b801561020d5764ffffffffff825116818110156101f8575064ffffffffff60208301511690818110156101e35750505b64ffffffffff6020818351169201511690818110156101ce575050826001600160801b0361019e818451168286511690610db6565b16116101a657005b6001600160801b038091511691511691630b4ba30d60e01b5f5260045260245260445260645ffd5b630517114360e01b5f5260045260245260445ffd5b633717194760e21b5f5260045260245260445ffd5b63da94737160e01b5f5260045260245260445ffd5b506001600160801b03835116806102245750610169565b63150ee1a560e21b5f5260045260245ffd5b5f80fd5b60403660031901126102365760043567ffffffffffffffff8111610236573660238201121561023657610277903690602481600401359101610c5a565b61027f610af0565b9080519061029461028f83610b80565b610aca565b82815292601f196102a484610b80565b015f5b8181106104305750506001600160801b036102c183610ce9565b5151169064ffffffffff67ffffffffffffffff60206102df86610ce9565b51015116918160406102f087610ce9565b510151160116906102ff610aaa565b9283526020830152604082015261031584610ce9565b5261031f83610ce9565b5060015b8281106103a057836040518091602082016020835281518091526020604084019201905f5b818110610356575050500390f35b919350916020606060019264ffffffffff604088516001600160801b03815116845267ffffffffffffffff8682015116868501520151166040820152019401910191849392610348565b806001600160801b036103b560019385610d0a565b51511667ffffffffffffffff60206103cd8487610d0a565b5101511664ffffffffff8060406103e75f1987018b610d0a565b510151168160406103f8878a610d0a565b51015116011690610407610aaa565b9283526020830152604082015261041e8287610d0a565b526104298186610d0a565b5001610323565b60209061043b610aaa565b5f81525f838201525f6040820152828289010152016102a7565b6101003660031901126102365761046a610a34565b61047336610b16565b61047b610b56565b9160843567ffffffffffffffff81116102365736602382011215610236576104ad903690602481600401359101610c5a565b906104b6610a4a565b906104bf610a60565b60e4359267ffffffffffffffff8411610236576104e36104f4943690600401610c08565b928764ffffffffff88511691610d1e565b805191821561066e5764ffffffffff81511664ffffffffff604061051785610ce9565b51015116111561063f5760200180515f198401919064ffffffffff1684831161062b5764ffffffffff604061054c8587610d0a565b51015116036105fb57505f9283928392505b81831061059157856001600160801b03808716911681810361057c57005b634b52f2ff60e01b5f5260045260245260445ffd5b909192936105b4906001600160801b036105ab8685610d0a565b51511690610db6565b9364ffffffffff8060406105c88786610d0a565b510151169116808211156105e2575092600101919061055e565b84637d6d1f3360e01b5f5260045260245260445260645ffd5b61061164ffffffffff9283604093511694610d0a565b510151169063474537ff60e11b5f5260045260245260445ffd5b634e487b7160e01b5f52601160045260245ffd5b604061065464ffffffffff8093511693610ce9565b5101511690630f500ccb60e41b5f5260045260245260445ffd5b630c8936c160e31b5f5260045ffd5b60403660031901126102365760043567ffffffffffffffff81116102365736602382011215610236576106ba903690602481600401359101610b98565b6106c2610af0565b908051906106d261028f83610b80565b82815292601f196106e284610b80565b015f5b81811061081b57505064ffffffffff6001600160801b0361070584610ce9565b5151169181602061071586610ce9565b510151160116610723610a76565b918252602082015261073484610ce9565b5261073e83610ce9565b5060015b8281106107aa57836040518091602082016020835281518091526020604084019201905f5b818110610775575050500390f35b825180516001600160801b0316855260209081015164ffffffffff168186015286955060409094019390920191600101610767565b806001600160801b036107bf60019385610d0a565b51511664ffffffffff8060206107d85f1986018a610d0a565b510151168160206107e98689610d0a565b5101511601166107f7610a76565b91825260208201526108098287610d0a565b526108148186610d0a565b5001610742565b602090610826610a76565b5f81525f83820152828289010152016106e5565b6101003660031901126102365761084f610a34565b61085836610b16565b610860610b56565b9160843567ffffffffffffffff8111610236573660238201121561023657610892903690602481600401359101610b98565b9061089b610a4a565b906108a4610a60565b60e4359267ffffffffffffffff8411610236576104e36108c8943690600401610c08565b8051918215610a255764ffffffffff81511664ffffffffff60206108eb85610ce9565b5101511611156109f65760200180515f198401919064ffffffffff1684831161062b5764ffffffffff60206109208587610d0a565b51015116036109c657505f9283928392505b81831061096557856001600160801b03808716911681810361095057005b6359b0e8dd60e01b5f5260045260245260445ffd5b9091929361097f906001600160801b036105ab8685610d0a565b9364ffffffffff8060206109938786610d0a565b510151169116808211156109ad5750926001019190610932565b846373a9cd5f60e01b5f5260045260245260445260645ffd5b6109dc64ffffffffff9283602093511694610d0a565b5101511690632828b1df60e11b5f5260045260245260445ffd5b6020610a0b64ffffffffff8093511693610ce9565b5101511690632719805f60e21b5f5260045260245260445ffd5b63ff743f9160e01b5f5260045ffd5b600435906001600160a01b038216820361023657565b60a435906001600160a01b038216820361023657565b60c435906001600160a01b038216820361023657565b604051906040820182811067ffffffffffffffff821117610a9657604052565b634e487b7160e01b5f52604160045260245ffd5b604051906060820182811067ffffffffffffffff821117610a9657604052565b6040519190601f01601f1916820167ffffffffffffffff811183821017610a9657604052565b6024359064ffffffffff8216820361023657565b359064ffffffffff8216820361023657565b604090602319011261023657610b2a610a76565b9060243564ffffffffff8116810361023657825260443564ffffffffff81168103610236576020830152565b606435906001600160801b038216820361023657565b35906001600160801b038216820361023657565b67ffffffffffffffff8111610a965760051b60200190565b929192610ba761028f83610b80565b93828552602085019260061b82019181831161023657925b828410610bcc5750505050565b604084830312610236576020604091610be3610a76565b610bec87610b6c565b8152610bf9838801610b04565b83820152815201930192610bbf565b81601f820112156102365780359067ffffffffffffffff8211610a9657610c38601f8301601f1916602001610aca565b928284526020838301011161023657815f926020809301838601378301015290565b929192610c6961028f83610b80565b93828552606060208601930282019181831161023657925b828410610c8e5750505050565b60608483031261023657610ca0610aaa565b90610caa85610b6c565b825260208501359067ffffffffffffffff821682036102365782602092836060950152610cd960408801610b04565b6040820152815201930192610c81565b805115610cf65760200190565b634e487b7160e01b5f52603260045260245ffd5b8051821015610cf65760209160051b010190565b6001600160a01b031615610da7576001600160801b031615610d985764ffffffffff1615610d8a576001600160a01b0391821691168114610d7857505160208111610d665750565b631f68a77160e21b5f5260045260245ffd5b635d66c1bb60e11b5f5260045260245ffd5b62fcdef560e71b5f5260045ffd5b6359d1976560e11b5f5260045ffd5b63feb974b360e01b5f5260045ffd5b906001600160801b03809116911601906001600160801b03821161062b5756fea2646970667358221220f03a5488d408a1cdc9b7d44cd370a129774920cf2a8fd9fdcfb3a93e6595d55a64736f6c634300081d0033

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.