Source Code
Overview
MON Balance
MON Value
$0.00View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Name:
LiquidityBondsEvolution
Compiler Version
v0.8.22+commit.4fc1097e
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.22;
import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import { PausableUpgradeable } from "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol";
import {
ReentrancyGuardUpgradeable
} from "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol";
import {
IERC721ReceiverUpgradeable
} from "@openzeppelin/contracts-upgradeable/token/ERC721/IERC721ReceiverUpgradeable.sol";
import { IERC721 } from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { ECDSA } from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import { MessageHashUtils } from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import { ILiquidityBonds } from "./interface/ILiquidityBonds.sol";
import { INonFungiblePositionManager } from "./interface/INonfungiblePositionManager.sol";
import { IUniswapV3Pool } from "./interface/IUniswapV3Pool.sol";
import { IERC20MintBurn } from "./interface/IERC20MintBurn.sol";
/**
* @title LiquidityBondLockerV3
* @author Energi Core
* @notice Manages Uniswap V3 liquidity bond locking/unlocking for rewards.
*/
contract LiquidityBondsEvolution is
OwnableUpgradeable,
PausableUpgradeable,
ReentrancyGuardUpgradeable,
IERC721ReceiverUpgradeable
{
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event BondSet(
uint256 indexed bondId,
address collection,
address token0,
address token1,
uint256 requiredAmount1,
uint256 fee,
uint256 bondType,
uint256 lockDuration,
uint256 multiplier,
bool isActive
);
event LayerSet(
uint256 indexed layerId,
uint256 indexed bondId,
address baseLayer,
address outputLayer,
address token,
uint256 fee
);
event UniswapPositionManagerSet(address indexed oldManager, address indexed newManager);
event PositionLocked(uint256 indexed bondId, uint256 totalBonds, address indexed user);
event PositionUnlocked(
uint256 indexed lpBondTokenId,
uint256 indexed uniswapV3PositionId,
uint256 indexed bondId,
address user
);
event GMISet(address indexed oldGMI, address indexed newGMI);
event EthRecovered(address indexed to, uint256 amount);
event Erc20sRecovered(address indexed token, address indexed to, uint256 amount);
event Erc721Recovered(address indexed token, address indexed to, uint256 tokenId);
event AdditionalSet(uint256 additional);
event SignerSet(address indexed oldSigner, address indexed newSigner);
/*//////////////////////////////////////////////////////////////
STRUCTS
//////////////////////////////////////////////////////////////*/
struct Bond {
uint256 bondId;
address collection;
address token0;
address token1;
uint256 requiredAmount1;
uint256 fee;
int24 tickLower;
int24 tickUpper;
uint256 amount0Min;
uint256 amount1Min;
uint256 bondType;
uint256 lockDuration;
uint256 multiplier;
bool isActive;
address pool;
bool isGMIPool;
}
struct Lock {
uint256 uniswapV3PositionId;
uint256 lpBondId;
uint256 bondId;
uint256 startTime;
uint256 lockedAmount0;
uint256 lockedAmount1;
bool isLocked;
}
struct Layer {
uint256 layerId;
uint256 origBondId;
uint256 bondId;
address baseLayer;
address outputLayer;
address token;
uint256 fee;
}
/*//////////////////////////////////////////////////////////////
STORAGE
//////////////////////////////////////////////////////////////*/
/// @notice Bond configurations by bond ID
mapping(uint256 => Bond) public bonds;
/// @notice Lock information by Uniswap V3 position ID
mapping(uint256 => Lock) public locks;
/// @notice Base position ID for each bond (first position created)
mapping(uint256 => uint256) public basePositions;
/// @notice Uniswap V3 Position Manager contract
INonFungiblePositionManager public uniswapPositionManager;
/// @notice GMI contract
IERC20 public gmi;
/// @notice Additional amount added to token0 calculations
uint256 public additional;
/// @notice Authorized signer for off-chain signatures
address public signer;
/// @notice Nonce used for signature
uint256 public nonce;
/// @notice Multisig to store Minted positions
address public multiSig;
mapping(uint256 => uint256) public startTime;
mapping(uint256 => mapping(uint256 => Layer)) public layers;
address public multiSigBurned;
/*//////////////////////////////////////////////////////////////
MODIFIERS
//////////////////////////////////////////////////////////////*/
modifier bondExists(uint256 bondId) {
require(bonds[bondId].collection != address(0), "LiquidityBondLocker: Bond does not exist");
_;
}
modifier basePositionNotExists(uint256 bondId) {
require(basePositions[bondId] == 0, "LiquidityBondLocker: Base position exists");
_;
}
modifier basePositionExists(uint256 bondId) {
require(basePositions[bondId] != 0, "LiquidityBondLocker: Base position does not exist");
_;
}
/*//////////////////////////////////////////////////////////////
INITIALIZER
//////////////////////////////////////////////////////////////*/
function initialize(address uniswapPositionManager_, address signer_, address gmi_) external initializer {
require(uniswapPositionManager_ != address(0), "LiquidityBondLocker: Invalid position manager");
require(signer_ != address(0), "LiquidityBondLocker: Invalid signer");
uniswapPositionManager = INonFungiblePositionManager(uniswapPositionManager_);
signer = signer_;
gmi = IERC20(gmi_);
__Ownable_init();
__Pausable_init();
__ReentrancyGuard_init();
}
/*//////////////////////////////////////////////////////////////
LOCK/UNLOCK FUNCTIONS
//////////////////////////////////////////////////////////////*/
/**
* @notice Lock additional positions using off-chain signature verification
* @param _bondId The bond configuration to use
* @param _amount0 Amount of token0 to lock
* @param _amount1 Amount of token1 to lock per bond
* @param _signature Off-chain signature for verification
*/
function lockPositionChild(
uint256 _bondId,
uint256 _layerId,
uint256[] memory _baseTokenId,
uint256 _amount0,
uint256 _amount1,
uint256 _fee,
bytes memory _signature,
uint256 _numberOfBonds
) external payable nonReentrant whenNotPaused bondExists(_bondId) basePositionExists(_bondId) {
Layer storage layer = layers[_bondId][_layerId];
Bond storage bond = bonds[layer.bondId];
ILiquidityBonds lpbond = ILiquidityBonds(bond.collection);
require(signer != address(0), "LiquidityBondLocker: Signer not set");
require(bond.isActive, "LiquidityBondLocker: Bond not active");
require(_amount0 != 0, "LiquidityBondLocker: _amount0 cannot be 0");
require(_amount1 != 0, "LiquidityBondLocker: _amount1 cannot be 0");
require(_baseTokenId.length == _numberOfBonds, "LiquidityBondLocker: Base token IDs length mismatch");
require(_baseTokenId.length > 0, "LiquidityBondLocker: Base token IDs required");
for (uint i = 0; i < _baseTokenId.length; i++) {
IERC721 baseNFT = IERC721(layer.baseLayer);
require(
baseNFT.ownerOf(_baseTokenId[i]) == _msgSender(),
"LiquidityBondLocker: Not owner of base position"
);
baseNFT.transferFrom(_msgSender(), multiSigBurned, _baseTokenId[i]);
}
uint256 numberOfBonds = _numberOfBonds;
require(numberOfBonds > 0, "LiquidityBondLocker: Number of bonds must be greater than 0");
nonce += 1;
if (bond.token0 < bond.token1) {
_verifySignature(_bondId, _amount0, _amount1, _signature);
} else {
_verifySignature(_bondId, _amount1, _amount0, _signature);
}
IERC20MintBurn curToken0 = IERC20MintBurn(bond.token0);
IERC20MintBurn curToken1 = IERC20MintBurn(bond.token1);
curToken0.approve(address(uniswapPositionManager), type(uint256).max);
curToken1.approve(address(uniswapPositionManager), type(uint256).max);
curToken0.transferFrom(_msgSender(), address(this), _amount0 * numberOfBonds);
curToken1.mint(address(this), _amount1 * numberOfBonds);
uint256 fee = (_amount0 * numberOfBonds * layer.fee) / 10000;
require(_fee >= fee, "LiquidityBondLocker: Insufficient fee");
curToken0.transferFrom(_msgSender(), multiSig, fee);
for (uint256 i = 0; i < numberOfBonds; i++) {
INonFungiblePositionManager.MintParams memory params = INonFungiblePositionManager.MintParams({
token0: bond.token0 < bond.token1 ? bond.token0 : bond.token1,
token1: bond.token0 < bond.token1 ? bond.token1 : bond.token0,
fee: uint24(bond.fee),
tickLower: bond.tickLower,
tickUpper: bond.tickUpper,
amount0Desired: bond.token0 < bond.token1 ? _amount0 : _amount1,
amount1Desired: bond.token0 < bond.token1 ? _amount1 : _amount0,
amount0Min: bond.amount0Min,
amount1Min: bond.amount1Min,
recipient: address(this),
deadline: block.timestamp + 300
});
(uint256 tokenId, , , ) = uniswapPositionManager.mint(params);
uniswapPositionManager.transferFrom(address(this), multiSig, tokenId);
lpbond.mint(_msgSender(), tokenId);
locks[tokenId] = Lock({
uniswapV3PositionId: tokenId,
lpBondId: lpbond.currentIndex(),
bondId: bond.bondId,
startTime: block.timestamp,
lockedAmount0: bond.token0 < bond.token1 ? _amount0 : _amount1,
lockedAmount1: bond.token0 < bond.token1 ? _amount1 : _amount0,
isLocked: true
});
}
emit PositionLocked(bond.bondId, numberOfBonds, _msgSender());
}
/**
* @notice Unlock a liquidity position and claim rewards
* @param _lpBondTokenId The LP bond token ID to unlock
* @param _bondId The bond ID for validation
*/
function unlockPosition(uint256 _lpBondTokenId, uint256 _bondId) external nonReentrant whenNotPaused {
Bond storage bond = bonds[_bondId];
ILiquidityBonds lpBond = ILiquidityBonds(bond.collection);
require(lpBond.ownerOf(_lpBondTokenId) == _msgSender(), "LiquidityBondLocker: Not owner");
require(bond.isActive, "LiquidityBondLocker: Bond not active");
(uint256 uniswapV3PositionId, , , , , ) = lpBond.getBondInfo(_lpBondTokenId);
Lock storage lock = locks[uniswapV3PositionId];
require(lock.bondId == _bondId, "LiquidityBondLocker: Bond ID mismatch");
require(lock.lpBondId == _lpBondTokenId, "LiquidityBondLocker: LP Bond ID mismatch");
require(lock.isLocked, "LiquidityBondLocker: Not locked");
// c
require(block.timestamp >= bond.lockDuration, "LiquidityBondLocker: Lock not expired");
(, , address token0, address token1, , , , , , , , ) = uniswapPositionManager.positions(uniswapV3PositionId);
uint256 rewards0 = getRewards0(uniswapV3PositionId);
if (rewards0 > 0) {
if (bond.isGMIPool) {
if (token0 == address(gmi)) {
IERC20(token0).transfer(_msgSender(), rewards0);
}
if (token1 == address(gmi)) {
IERC20(token1).transfer(_msgSender(), rewards0);
}
} else {
gmi.transfer(_msgSender(), rewards0);
}
}
uniswapPositionManager.transferFrom(address(this), _msgSender(), uniswapV3PositionId);
locks[uniswapV3PositionId].isLocked = false;
lpBond.burn(_lpBondTokenId);
emit PositionUnlocked(_lpBondTokenId, uniswapV3PositionId, bond.bondId, _msgSender());
}
/*//////////////////////////////////////////////////////////////
INTERNAL FUNCTIONS
//////////////////////////////////////////////////////////////*/
/**
* @notice Verify off-chain signature for position data
*/
function _verifySignature(
uint256 _bondId,
uint256 _amount0,
uint256 _amount1,
bytes memory _signature
) internal view {
bytes32 msgHash = keccak256(
abi.encodePacked(basePositions[_bondId], _amount0, _amount1, address(this), nonce, msg.sender)
);
bytes32 ethSignedMessageHash = MessageHashUtils.toEthSignedMessageHash(msgHash);
address recoveredSigner = ECDSA.recover(ethSignedMessageHash, _signature);
require(recoveredSigner == signer, "LiquidityBondLocker: Invalid signature");
}
/*//////////////////////////////////////////////////////////////
VIEW FUNCTIONS
//////////////////////////////////////////////////////////////*/
/**
* @notice Get rewards for a locked position
* @param _uniswapV3PositionId The Uniswap V3 position ID
* @return rewards0 The calculated rewards in token0
*/
function getRewards0(uint256 _uniswapV3PositionId) public view returns (uint256 rewards0) {
Lock storage lock = locks[_uniswapV3PositionId];
Bond storage bond = bonds[lock.bondId];
uint256 timeDiff = bond.lockDuration - lock.startTime;
uint256 totalRewards = lock.lockedAmount0 * bond.multiplier * timeDiff;
uint256 rewardsAccured = totalRewards / (bond.lockDuration - startTime[lock.bondId]);
if (bond.isGMIPool) {
if (block.timestamp >= bond.lockDuration) {
rewards0 = (rewardsAccured * bond.multiplier) / 10000;
} else {
uint256 timeElapsed = block.timestamp - lock.startTime;
uint256 intrewards0 = (rewardsAccured * bond.multiplier * timeElapsed) / (timeDiff * 10000);
rewards0 = intrewards0 / 10000;
}
}
}
/*//////////////////////////////////////////////////////////////
ADMIN FUNCTIONS
//////////////////////////////////////////////////////////////*/
/**
* @notice Set or update a bond configuration
*/
function setBond(
uint256 _bondId,
address _collection,
address _token0,
address _token1,
uint256 _requiredAmount1,
uint256 _fee,
int24 _tickLower,
int24 _tickUpper,
uint256 _amount0Min,
uint256 _amount1Min,
uint256 _bondType,
uint256 _lockDuration,
uint256 _multiplier,
bool _isActive,
address _pool,
bool _isGMIPool
) external onlyOwner {
require(_bondId != 0, "LiquidityBondLocker: Bond ID cannot be zero");
require(_lockDuration > 0, "LiquidityBondLocker: Invalid lock duration");
require(_multiplier > 0, "LiquidityBondLocker: Invalid multiplier");
require(_requiredAmount1 > 0, "LiquidityBondLocker: Invalid required amount");
require(_collection != address(0), "LiquidityBondLocker: Invalid collection");
require(_token0 != address(0), "LiquidityBondLocker: Invalid token0");
require(_token1 != address(0), "LiquidityBondLocker: Invalid token1");
require(_token0 != _token1, "LiquidityBondLocker: Identical tokens");
require(_pool != address(0), "LiquidityBondLocker: Invalid pool");
bonds[_bondId] = Bond({
bondId: _bondId,
collection: _collection,
token0: _token0,
token1: _token1,
requiredAmount1: _requiredAmount1,
fee: _fee,
tickLower: _tickLower,
tickUpper: _tickUpper,
amount0Min: _amount0Min,
amount1Min: _amount1Min,
bondType: _bondType,
lockDuration: _lockDuration,
multiplier: _multiplier,
isActive: _isActive,
pool: _pool,
isGMIPool: _isGMIPool
});
emit BondSet(
_bondId,
_collection,
_token0,
_token1,
_requiredAmount1,
_fee,
_bondType,
_lockDuration,
_multiplier,
_isActive
);
}
function setLayer(
uint256 _layerId,
uint256 _origBondId,
uint256 _bondId,
address _baseLayer,
address _outputLayer,
address _token,
uint256 _fee
) external onlyOwner {
layers[_origBondId][_layerId] = Layer({
layerId: _layerId,
origBondId: _origBondId,
bondId: _bondId,
baseLayer: _baseLayer,
outputLayer: _outputLayer,
token: _token,
fee: _fee
});
emit LayerSet(_layerId, _bondId, _baseLayer, _outputLayer, _token, _fee);
}
function setUniswapPositionManager(address _uniswapPositionManager) external onlyOwner {
require(_uniswapPositionManager != address(0), "LiquidityBondLocker: Invalid address");
address oldManager = address(uniswapPositionManager);
require(oldManager != _uniswapPositionManager, "LiquidityBondLocker: Same address");
uniswapPositionManager = INonFungiblePositionManager(_uniswapPositionManager);
emit UniswapPositionManagerSet(oldManager, _uniswapPositionManager);
}
function setGMI(address _newGMI) external onlyOwner {
require(_newGMI != address(0), "LiquidityBondLocker: Invalid address");
address oldGMI = address(gmi);
gmi = IERC20(_newGMI);
emit GMISet(oldGMI, _newGMI);
}
function setSigner(address _newSigner) external onlyOwner {
require(_newSigner != address(0), "LiquidityBondLocker: Invalid address");
address oldSigner = signer;
require(oldSigner != _newSigner, "LiquidityBondLocker: Same address");
signer = _newSigner;
emit SignerSet(oldSigner, _newSigner);
}
function setAdditional(uint256 _newAdditional) external onlyOwner {
additional = _newAdditional;
emit AdditionalSet(_newAdditional);
}
function setBasePosition(uint256 _bondId, uint256 _basePosition) external onlyOwner {
require(_bondId != 0, "LiquidityBondLocker: Invalid bond ID");
require(_basePosition != 0, "LiquidityBondLocker: Invalid position ID");
basePositions[_bondId] = _basePosition;
}
function pause() external onlyOwner whenNotPaused {
_pause();
}
function unpause() external onlyOwner whenPaused {
_unpause();
}
function setMultiSig(address _multiSig) external onlyOwner {
multiSig = _multiSig;
}
function setMultiSigBurned(address _multiSigBurned) external onlyOwner {
multiSigBurned = _multiSigBurned;
}
/*//////////////////////////////////////////////////////////////
EMERGENCY RECOVERY
//////////////////////////////////////////////////////////////*/
function recoverETH(address _to, uint256 _amount) external onlyOwner {
require(_to != address(0), "LiquidityBondLocker: Invalid address");
require(_amount > 0, "LiquidityBondLocker: Invalid amount");
require(address(this).balance >= _amount, "LiquidityBondLocker: Insufficient balance");
(bool success, ) = _to.call{ value: _amount }("");
require(success, "LiquidityBondLocker: ETH transfer failed");
emit EthRecovered(_to, _amount);
}
function recoverERC721(address _token, address _to, uint256 _tokenId) external onlyOwner {
require(_token != address(0), "LiquidityBondLocker: Invalid token address");
require(_to != address(0), "LiquidityBondLocker: Invalid recipient");
IERC721(_token).transferFrom(address(this), _to, _tokenId);
emit Erc721Recovered(_token, _to, _tokenId);
}
function recoverERC20(address _token, address _to, uint256 _amount) external onlyOwner {
require(_token != address(0), "LiquidityBondLocker: Invalid token address");
require(_to != address(0), "LiquidityBondLocker: Invalid recipient");
require(_amount > 0, "LiquidityBondLocker: Invalid amount");
IERC20(_token).transfer(_to, _amount);
emit Erc20sRecovered(_token, _to, _amount);
}
/**
* @notice Set the start time for a specific bond ID
* @param _bondId bond id to set the start time for
* @param _startTime start time to set
*/
function setStartTime(uint256 _bondId, uint256 _startTime) external onlyOwner {
startTime[_bondId] = _startTime;
}
/*//////////////////////////////////////////////////////////////
ERC721 RECEIVER
//////////////////////////////////////////////////////////////*/
function onERC721Received(address, address, uint256, bytes calldata) external pure override returns (bytes4) {
return this.onERC721Received.selector;
}
function _currentTime() internal view virtual returns (uint256) {
return block.timestamp;
}
/*//////////////////////////////////////////////////////////////
FALLBACK
//////////////////////////////////////////////////////////////*/
receive() external payable {}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/ContextUpgradeable.sol";
import "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
function __Ownable_init() internal onlyInitializing {
__Ownable_init_unchained();
}
function __Ownable_init_unchained() internal onlyInitializing {
_transferOwnership(_msgSender());
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
/**
* This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.0;
import "../../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To initialize the implementation contract, you can either invoke the
* initializer manually, or you can include a constructor to automatically mark it as initialized when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() initializer {}
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
*/
bool private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Modifier to protect an initializer function from being invoked twice.
*/
modifier initializer() {
// If the contract is initializing we ignore whether _initialized is set in order to support multiple
// inheritance patterns, but we only do this in the context of a constructor, because in other contexts the
// contract may have been reentered.
require(_initializing ? _isConstructor() : !_initialized, "Initializable: contract is already initialized");
bool isTopLevelCall = !_initializing;
if (isTopLevelCall) {
_initializing = true;
_initialized = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
}
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} modifier, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
function _isConstructor() private view returns (bool) {
return !AddressUpgradeable.isContract(address(this));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/Pausable.sol)
pragma solidity ^0.8.0;
import "../utils/ContextUpgradeable.sol";
import "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
function __Pausable_init() internal onlyInitializing {
__Pausable_init_unchained();
}
function __Pausable_init_unchained() internal onlyInitializing {
_paused = false;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
require(!paused(), "Pausable: paused");
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
require(paused(), "Pausable: not paused");
_;
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
/**
* This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuardUpgradeable is Initializable {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
function __ReentrancyGuard_init() internal onlyInitializing {
__ReentrancyGuard_init_unchained();
}
function __ReentrancyGuard_init_unchained() internal onlyInitializing {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721ReceiverUpgradeable {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
import "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
/**
* This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC-721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC-721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
*/
function toDataWithIntendedValidatorHash(
address validator,
bytes32 messageHash
) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, hex"19_00")
mstore(0x02, shl(96, validator))
mstore(0x16, messageHash)
digest := keccak256(0x00, 0x36)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*
* NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
* RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
* characters that are not in this range, but other tooling may provide different results.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(buffer, add(0x20, offset)))
}
}
}// Copyright 2025 Energi Core
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// Energi Governance system is the fundamental part of Energi Core.
// NOTE: It's not allowed to change the compiler due to byte-to-byte
// match requirement.
/// @title IERC20MintBurn
/// @author Energi Core
pragma solidity 0.8.22;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IERC20MintBurn is IERC20 {
function mint(address to, uint256 amount) external;
function burn(address from, uint256 amount) external;
}// Copyright 2025 Energi Core
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// Energi Governance system is the fundamental part of Energi Core.
// NOTE: It's not allowed to change the compiler due to byte-to-byte
// match requirement.
/// @title ILiquidityBonds
/// @author Energi Core
pragma solidity 0.8.22;
import { IERC721 } from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
interface ILiquidityBonds is IERC721 {
function mint(address _to, uint256 _uniswapV3PositionId) external;
function burn(uint256 _tokenId) external;
function currentIndex() external view returns (uint256);
function getBondInfo(
uint256 _bondId
)
external
view
returns (
uint256 uniswapV3PositionId,
uint256 startTime,
uint256 duration,
uint256 durationLeft,
uint256 rewardsGMI,
uint256 rewardsWETH9
);
}// Copyright 2025 Energi Core
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// Energi Governance system is the fundamental part of Energi Core.
// NOTE: It's not allowed to change the compiler due to byte-to-byte
// match requirement.
/// @title INonFungiblePositionManager
/// @author Energi Core
pragma solidity 0.8.22;
import { IERC721 } from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
interface INonFungiblePositionManager is IERC721 {
/// @notice Emitted when liquidity is increased for a position NFT
/// @dev Also emitted when a token is minted
/// @param tokenId The ID of the token for which liquidity was increased
/// @param liquidity The amount by which liquidity for the NFT position was increased
/// @param amount0 The amount of token0 that was paid for the increase in liquidity
/// @param amount1 The amount of token1 that was paid for the increase in liquidity
event IncreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
/// @notice Emitted when liquidity is decreased for a position NFT
/// @param tokenId The ID of the token for which liquidity was decreased
/// @param liquidity The amount by which liquidity for the NFT position was decreased
/// @param amount0 The amount of token0 that was accounted for the decrease in liquidity
/// @param amount1 The amount of token1 that was accounted for the decrease in liquidity
event DecreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
/// @notice Emitted when tokens are collected for a position NFT
/// @dev The amounts reported may not be exactly equivalent to the amounts transferred, due to rounding behavior
/// @param tokenId The ID of the token for which underlying tokens were collected
/// @param recipient The address of the account that received the collected tokens
/// @param amount0 The amount of token0 owed to the position that was collected
/// @param amount1 The amount of token1 owed to the position that was collected
event Collect(uint256 indexed tokenId, address recipient, uint256 amount0, uint256 amount1);
/// @notice Returns the position information associated with a given token ID.
/// @dev Throws if the token ID is not valid.
/// @param tokenId The ID of the token that represents the position
/// @return nonce The nonce for permits
/// @return operator The address that is approved for spending
/// @return token0 The address of the token0 for a specific pool
/// @return token1 The address of the token1 for a specific pool
/// @return fee The fee associated with the pool
/// @return tickLower The lower end of the tick range for the position
/// @return tickUpper The higher end of the tick range for the position
/// @return liquidity The liquidity of the position
/// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position
/// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position
/// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation
/// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation
function positions(
uint256 tokenId
)
external
view
returns (
uint96 nonce,
address operator,
address token0,
address token1,
uint24 fee,
int24 tickLower,
int24 tickUpper,
uint128 liquidity,
uint256 feeGrowthInside0LastX128,
uint256 feeGrowthInside1LastX128,
uint128 tokensOwed0,
uint128 tokensOwed1
);
struct MintParams {
address token0;
address token1;
uint24 fee;
int24 tickLower;
int24 tickUpper;
uint256 amount0Desired;
uint256 amount1Desired;
uint256 amount0Min;
uint256 amount1Min;
address recipient;
uint256 deadline;
}
/// @notice Creates a new position wrapped in a NFT
/// @dev Call this when the pool does exist and is initialized. Note that if the pool is created but not initialized
/// a method does not exist, i.e. the pool is assumed to be initialized.
/// @param params The params necessary to mint a position, encoded as `MintParams` in calldata
/// @return tokenId The ID of the token that represents the minted position
/// @return liquidity The amount of liquidity for this position
/// @return amount0 The amount of token0
/// @return amount1 The amount of token1
function mint(
MintParams calldata params
) external payable returns (uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
struct IncreaseLiquidityParams {
uint256 tokenId;
uint256 amount0Desired;
uint256 amount1Desired;
uint256 amount0Min;
uint256 amount1Min;
uint256 deadline;
}
/// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender`
/// @param params tokenId The ID of the token for which liquidity is being increased,
/// amount0Desired The desired amount of token0 to be spent,
/// amount1Desired The desired amount of token1 to be spent,
/// amount0Min The minimum amount of token0 to spend, which serves as a slippage check,
/// amount1Min The minimum amount of token1 to spend, which serves as a slippage check,
/// deadline The time by which the transaction must be included to effect the change
/// @return liquidity The new liquidity amount as a result of the increase
/// @return amount0 The amount of token0 to acheive resulting liquidity
/// @return amount1 The amount of token1 to acheive resulting liquidity
function increaseLiquidity(
IncreaseLiquidityParams calldata params
) external payable returns (uint128 liquidity, uint256 amount0, uint256 amount1);
struct DecreaseLiquidityParams {
uint256 tokenId;
uint128 liquidity;
uint256 amount0Min;
uint256 amount1Min;
uint256 deadline;
}
/// @notice Decreases the amount of liquidity in a position and accounts it to the position
/// @param params tokenId The ID of the token for which liquidity is being decreased,
/// amount The amount by which liquidity will be decreased,
/// amount0Min The minimum amount of token0 that should be accounted for the burned liquidity,
/// amount1Min The minimum amount of token1 that should be accounted for the burned liquidity,
/// deadline The time by which the transaction must be included to effect the change
/// @return amount0 The amount of token0 accounted to the position's tokens owed
/// @return amount1 The amount of token1 accounted to the position's tokens owed
function decreaseLiquidity(
DecreaseLiquidityParams calldata params
) external payable returns (uint256 amount0, uint256 amount1);
struct CollectParams {
uint256 tokenId;
address recipient;
uint128 amount0Max;
uint128 amount1Max;
}
/// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient
/// @param params tokenId The ID of the NFT for which tokens are being collected,
/// recipient The account that should receive the tokens,
/// amount0Max The maximum amount of token0 to collect,
/// amount1Max The maximum amount of token1 to collect
/// @return amount0 The amount of fees collected in token0
/// @return amount1 The amount of fees collected in token1
function collect(CollectParams calldata params) external payable returns (uint256 amount0, uint256 amount1);
/// @notice Burns a token ID, which deletes it from the NFT contract. The token must have 0 liquidity and all tokens
/// must be collected first.
/// @param tokenId The ID of the token that is being burned
function burn(uint256 tokenId) external payable;
}// Copyright 2025 Energi Core
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// Energi Governance system is the fundamental part of Energi Core.
// NOTE: It's not allowed to change the compiler due to byte-to-byte
// match requirement.
/// @title IUniswapV3Pool
/// @author Energi Core
pragma solidity 0.8.22;
import { IERC721 } from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
interface IUniswapV3Pool is IERC721 {
function slot0()
external
view
returns (
uint160 sqrtPriceX96,
int24 tick,
uint16 observationIndex,
uint16 observationCardinality,
uint16 observationCardinalityNext,
uint8 feeProtocol,
bool unlocked
);
}
// // the current price
// uint160 sqrtPriceX96;
// // the current tick
// int24 tick;
// // the most-recently updated index of the observations array
// uint16 observationIndex;
// // the current maximum number of observations that are being stored
// uint16 observationCardinality;
// // the next maximum number of observations to store, triggered in observations.write
// uint16 observationCardinalityNext;
// // the current protocol fee as a percentage of the swap fee taken on withdrawal
// // represented as an integer denominator (1/x)%
// uint8 feeProtocol;
// // whether the pool is locked
// bool unlocked;{
"optimizer": {
"enabled": true,
"runs": 200
},
"viaIR": true,
"evmVersion": "paris",
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"additional","type":"uint256"}],"name":"AdditionalSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"bondId","type":"uint256"},{"indexed":false,"internalType":"address","name":"collection","type":"address"},{"indexed":false,"internalType":"address","name":"token0","type":"address"},{"indexed":false,"internalType":"address","name":"token1","type":"address"},{"indexed":false,"internalType":"uint256","name":"requiredAmount1","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"fee","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"bondType","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"lockDuration","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"multiplier","type":"uint256"},{"indexed":false,"internalType":"bool","name":"isActive","type":"bool"}],"name":"BondSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Erc20sRecovered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Erc721Recovered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"EthRecovered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldGMI","type":"address"},{"indexed":true,"internalType":"address","name":"newGMI","type":"address"}],"name":"GMISet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"layerId","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"bondId","type":"uint256"},{"indexed":false,"internalType":"address","name":"baseLayer","type":"address"},{"indexed":false,"internalType":"address","name":"outputLayer","type":"address"},{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"fee","type":"uint256"}],"name":"LayerSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"bondId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalBonds","type":"uint256"},{"indexed":true,"internalType":"address","name":"user","type":"address"}],"name":"PositionLocked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"lpBondTokenId","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"uniswapV3PositionId","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"bondId","type":"uint256"},{"indexed":false,"internalType":"address","name":"user","type":"address"}],"name":"PositionUnlocked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldSigner","type":"address"},{"indexed":true,"internalType":"address","name":"newSigner","type":"address"}],"name":"SignerSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldManager","type":"address"},{"indexed":true,"internalType":"address","name":"newManager","type":"address"}],"name":"UniswapPositionManagerSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"additional","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"basePositions","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"bonds","outputs":[{"internalType":"uint256","name":"bondId","type":"uint256"},{"internalType":"address","name":"collection","type":"address"},{"internalType":"address","name":"token0","type":"address"},{"internalType":"address","name":"token1","type":"address"},{"internalType":"uint256","name":"requiredAmount1","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"},{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"},{"internalType":"uint256","name":"amount0Min","type":"uint256"},{"internalType":"uint256","name":"amount1Min","type":"uint256"},{"internalType":"uint256","name":"bondType","type":"uint256"},{"internalType":"uint256","name":"lockDuration","type":"uint256"},{"internalType":"uint256","name":"multiplier","type":"uint256"},{"internalType":"bool","name":"isActive","type":"bool"},{"internalType":"address","name":"pool","type":"address"},{"internalType":"bool","name":"isGMIPool","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_uniswapV3PositionId","type":"uint256"}],"name":"getRewards0","outputs":[{"internalType":"uint256","name":"rewards0","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gmi","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"uniswapPositionManager_","type":"address"},{"internalType":"address","name":"signer_","type":"address"},{"internalType":"address","name":"gmi_","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"layers","outputs":[{"internalType":"uint256","name":"layerId","type":"uint256"},{"internalType":"uint256","name":"origBondId","type":"uint256"},{"internalType":"uint256","name":"bondId","type":"uint256"},{"internalType":"address","name":"baseLayer","type":"address"},{"internalType":"address","name":"outputLayer","type":"address"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_bondId","type":"uint256"},{"internalType":"uint256","name":"_layerId","type":"uint256"},{"internalType":"uint256[]","name":"_baseTokenId","type":"uint256[]"},{"internalType":"uint256","name":"_amount0","type":"uint256"},{"internalType":"uint256","name":"_amount1","type":"uint256"},{"internalType":"uint256","name":"_fee","type":"uint256"},{"internalType":"bytes","name":"_signature","type":"bytes"},{"internalType":"uint256","name":"_numberOfBonds","type":"uint256"}],"name":"lockPositionChild","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"locks","outputs":[{"internalType":"uint256","name":"uniswapV3PositionId","type":"uint256"},{"internalType":"uint256","name":"lpBondId","type":"uint256"},{"internalType":"uint256","name":"bondId","type":"uint256"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"lockedAmount0","type":"uint256"},{"internalType":"uint256","name":"lockedAmount1","type":"uint256"},{"internalType":"bool","name":"isLocked","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"multiSig","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"multiSigBurned","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"recoverERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_tokenId","type":"uint256"}],"name":"recoverERC721","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"recoverETH","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_newAdditional","type":"uint256"}],"name":"setAdditional","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_bondId","type":"uint256"},{"internalType":"uint256","name":"_basePosition","type":"uint256"}],"name":"setBasePosition","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_bondId","type":"uint256"},{"internalType":"address","name":"_collection","type":"address"},{"internalType":"address","name":"_token0","type":"address"},{"internalType":"address","name":"_token1","type":"address"},{"internalType":"uint256","name":"_requiredAmount1","type":"uint256"},{"internalType":"uint256","name":"_fee","type":"uint256"},{"internalType":"int24","name":"_tickLower","type":"int24"},{"internalType":"int24","name":"_tickUpper","type":"int24"},{"internalType":"uint256","name":"_amount0Min","type":"uint256"},{"internalType":"uint256","name":"_amount1Min","type":"uint256"},{"internalType":"uint256","name":"_bondType","type":"uint256"},{"internalType":"uint256","name":"_lockDuration","type":"uint256"},{"internalType":"uint256","name":"_multiplier","type":"uint256"},{"internalType":"bool","name":"_isActive","type":"bool"},{"internalType":"address","name":"_pool","type":"address"},{"internalType":"bool","name":"_isGMIPool","type":"bool"}],"name":"setBond","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newGMI","type":"address"}],"name":"setGMI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_layerId","type":"uint256"},{"internalType":"uint256","name":"_origBondId","type":"uint256"},{"internalType":"uint256","name":"_bondId","type":"uint256"},{"internalType":"address","name":"_baseLayer","type":"address"},{"internalType":"address","name":"_outputLayer","type":"address"},{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_fee","type":"uint256"}],"name":"setLayer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_multiSig","type":"address"}],"name":"setMultiSig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_multiSigBurned","type":"address"}],"name":"setMultiSigBurned","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newSigner","type":"address"}],"name":"setSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_bondId","type":"uint256"},{"internalType":"uint256","name":"_startTime","type":"uint256"}],"name":"setStartTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_uniswapPositionManager","type":"address"}],"name":"setUniswapPositionManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"startTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"uniswapPositionManager","outputs":[{"internalType":"contract INonFungiblePositionManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_lpBondTokenId","type":"uint256"},{"internalType":"uint256","name":"_bondId","type":"uint256"}],"name":"unlockPosition","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]Contract Creation Code
608080604052346100165761364a908161001c8239f35b600080fdfe6080604052600436101561001b575b361561001957600080fd5b005b6000803560e01c8063021c025d146126b75780630e11ffae146119055780631171bda914611804578063150b7a02146117955780631aac4c5e146116ae5780631ffc67fb14611685578063238ac9331461165c578063284d30ef146116115780632cdf2c351461152b5780633395acc7146114d057806336e0004a146114a757806339a2d2fe1461130f5780633e0c0629146111a75780633ec4c9681461117d5780633f4ba83a1461110b57806356a701311461108c5780635c975abb146110695780635f1c17c014610f6a5780636c19e78314610edf578063715018a614610e7e578063810d675a14610e575780638456cb5914610de15780638da5cb5b14610db857806390d082e914610d8e5780639de3567c14610d03578063affed0e014610ce5578063b44eeea71461064c578063ba278e0814610618578063c0c53b8b146103f9578063ca1de4fe146103ae578063db358f2f14610385578063e5047b301461035c578063e8ea79c01461033e578063edf8bc05146102c0578063f2fde38b146102265763f4dadc61146101b3575061000e565b3461022357602036600319011261022357604060e091600435815260ca602052208054906001810154906002810154600382015460048301549160ff600660058601549501541694604051968752602087015260408601526060850152608084015260a0830152151560c0820152f35b80fd5b503461022357602036600319011261022357610240612d72565b6033546001600160a01b03906102599082163314612fac565b81161561026c576102699061341a565b80f35b60405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b6064820152608490fd5b503461022357604060e0916102d436612cee565b90825260d360205282822090825260205220805490600181015490600281015460018060a01b039081600384015416906006836004860154169360058601541694015494604051968752602087015260408601526060850152608084015260a083015260c0820152f35b5034610223578060031936011261022357602060ce54604051908152f35b503461022357806003193601126102235760cc546040516001600160a01b039091168152602090f35b503461022357806003193601126102235760cd546040516001600160a01b039091168152602090f35b5034610223576020366003190112610223576103c8612d72565b6033546001600160a01b0391906103e29083163314612fac565b166001600160601b0360a01b60d454161760d45580f35b503461022357606036600319011261022357610413612d72565b61041b612d88565b610423612db4565b9183549260ff8460081c168060001461060e57303b155b156105b2571593846105a1575b506001600160a01b0391821692831561054657821680156104f5576001600160601b0360a01b938460cc54161760cc558360cf54161760cf55169060cd54161760cd556104a360ff835460081c1661049e81613463565b613463565b6104ac3361341a565b8154906104de60ff8360081c166104c281613463565b6104cb81613463565b60ff196065541660655561049e81613463565b60016097556104eb575080f35b61ff001916815580f35b60405162461bcd60e51b815260206004820152602360248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c6964207369676044820152623732b960e91b6064820152608490fd5b60405162461bcd60e51b815260206004820152602d60248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420706f7360448201526c34ba34b7b71036b0b730b3b2b960991b6064820152608490fd5b61ffff191661010117855538610447565b60405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b6064820152608490fd5b60ff85161561043a565b50346102235761062736612cee565b9061063d60018060a01b03603354163314612fac565b825260d2602052604082205580f35b50346102235761020036600319011261022357610667612d88565b61066f612db4565b610677612d9e565b60c435918260020b8303610ce05760e435928360020b8403610ce0576101a435938415158503610ce0576101c4356001600160a01b0381168103610ce0576101e435918215158303610ce0576106d860018060a01b03603354163314612fac565b60043515610c87576101643515610c2f576101843515610bda5760843515610b80576001600160a01b03881615610b2b576001600160a01b03851615610ada576001600160a01b03861615610a89576001600160a01b0385811690871614610a36576001600160a01b038216156109e757604051938461020081011067ffffffffffffffff610200870111176109d1576102008501604052600435855260018060a01b038916602086015260018060a01b038616604086015260018060a01b0387166060860152608435608086015260a43560a086015260020b60c085015260020b60e084015261010435610100840152610124356101208401526101443561014084015261016435610160840152610184356101808401528515156101a084015260018060a01b03166101c083015215156101e0820152600435865260c9602052600c60408720825181556001810160018060a01b03602085015116906001600160601b0360a01b91828254161790556002820160018060a01b0360408601511682825416179055600382019060018060a01b03606086015116908254161790556080830151600482015560a083015160058201556006810160c0840151815462ffffff60e087015160181b65ffffff0000001692169065ffffffffffff191617179055610100830151600782015561012083015160088201556101408301516009820155610160830151600a820155610180830151600b82015501906109136101a08201511515839060ff801983541691151516179055565b6101c081015182546101e090920151610100600160b01b031990921660089190911b610100600160a81b03161790151560a81b60ff60a81b16179055604080516001600160a01b03958616815291851660208301529190931690830152608435606083015260a43560808301526101443560a08301526101643560c08301526101843560e08301521515610100820152600435907f1ec2cb67b4962fb16bf5646dd75edc5850e0424571d73e6091e80788a3f4ad5f9061012090a280f35b634e487b7160e01b600052604160045260246000fd5b60405162461bcd60e51b815260206004820152602160248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420706f6f6044820152601b60fa1b6064820152608490fd5b60405162461bcd60e51b815260206004820152602560248201527f4c6971756964697479426f6e644c6f636b65723a204964656e746963616c20746044820152646f6b656e7360d81b6064820152608490fd5b60405162461bcd60e51b815260206004820152602360248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420746f6b604482015262656e3160e81b6064820152608490fd5b60405162461bcd60e51b815260206004820152602360248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420746f6b6044820152620656e360ec1b6064820152608490fd5b60405162461bcd60e51b815260206004820152602760248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420636f6c6044820152663632b1ba34b7b760c91b6064820152608490fd5b60405162461bcd60e51b815260206004820152602c60248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c69642072657160448201526b1d5a5c995908185b5bdd5b9d60a21b6064820152608490fd5b60405162461bcd60e51b815260206004820152602760248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c6964206d756c6044820152663a34b83634b2b960c91b6064820152608490fd5b60405162461bcd60e51b815260206004820152602a60248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c6964206c6f636044820152693590323ab930ba34b7b760b11b6064820152608490fd5b60405162461bcd60e51b815260206004820152602b60248201527f4c6971756964697479426f6e644c6f636b65723a20426f6e642049442063616e60448201526a6e6f74206265207a65726f60a81b6064820152608490fd5b600080fd5b5034610223578060031936011261022357602060d054604051908152f35b503461022357602036600319011261022357610d1d612d72565b6033546001600160a01b03918291610d389083163314612fac565b1690610d45821515613109565b8160cc5491821691610d59828414156131a4565b6001600160a01b0319161760cc557fdc191f971b2df5e9dfb661b1bd934266d7873a21719372ac9a6415b7f5c679668380a380f35b5034610223576020366003190112610223576040602091600435815260cb83522054604051908152f35b50346102235780600319360112610223576033546040516001600160a01b039091168152602090f35b5034610223578060031936011261022357610e0760018060a01b03603354163314612fac565b6001606554610e2260ff821615610e1d81612e4b565b612e4b565b60ff1916176065557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586020604051338152a180f35b5034610223576020366003190112610223576020610e76600435613207565b604051908152f35b50346102235780600319360112610223576033546000906001600160a01b03811690610eab338314612fac565b6001600160a01b0319166033557f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b503461022357602036600319011261022357610ef9612d72565b6033546001600160a01b03918291610f149083163314612fac565b1690610f21821515613109565b8160cf5491821691610f35828414156131a4565b6001600160a01b0319161760cf557fb0604c365feafa080c833b6f6814d321a7561528e696ac2a112c2a0231b0ed358380a380f35b503461022357602036600319011261022357604061020091600435815260c96020522060ff81549160018060a01b036001820154169060018060a01b0360028201541660018060a01b03600383015416600483015460058401546006850154600786015491600887015493600988015495600a89015497600c600b8b01549a01549a60206040519e8f908152015260408d015260608c015260808b015260a08a01528060020b60c08a015260181c60020b60e089015261010088015261012087015261014086015261016085015261018084015281811615156101a084015260018060a01b038160081c166101c084015260a81c1615156101e0820152f35b5034610223578060031936011261022357602060ff606554166040519015158152f35b5034610223576020366003190112610223576110a6612d72565b6033546001600160a01b039182916110c19083163314612fac565b16906110ce821515613109565b60cd54826001600160601b0360a01b82161760cd55167f3a753e7c76490009eaecdc23ebd537d53b956ed9b6ada05cabd6a2e36b4e43d38380a380f35b503461022357806003193601126102235761113160018060a01b03603354163314612fac565b60655461114960ff821661114481613161565b613161565b60ff19166065557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa6020604051338152a180f35b5034610223576020366003190112610223576040602091600435815260d283522054604051908152f35b5034610223576040366003190112610223576111c1612d72565b60243560018060a01b036111da81603354163314612fac565b8216916111e8831515613109565b6111f38215156130b1565b8147106112b8578380808481945af13d156112b3573d61121281612d56565b906112206040519283612d34565b81528460203d92013e5b1561125d5760207fd01205615e35ba1dd087bd6dac5922e0370961b3726c247c078cd59baae5770e91604051908152a280f35b60405162461bcd60e51b815260206004820152602860248201527f4c6971756964697479426f6e644c6f636b65723a20455448207472616e7366656044820152671c8819985a5b195960c21b6064820152608490fd5b61122a565b60405162461bcd60e51b815260206004820152602960248201527f4c6971756964697479426f6e644c6f636b65723a20496e73756666696369656e604482015268742062616c616e636560b81b6064820152608490fd5b50346102235760e036600319011261022357611329612d9e565b6084356001600160a01b0381168103610ce05760a435906001600160a01b0382168203610ce05761136560018060a01b03603354163314612fac565b60405161137181612d18565b60043581526024356020820152604435604082015260018060a01b03841660608201526006608082019160018060a01b038416835260a0810160018060a01b038616815260c082019160c4358352602435895260d3602052604089206004358a5260205260408920948151865560208201516001870155604082015160028701556003860191606060018060a01b0391015116916001600160601b0360a01b9283825416179055600486019060018060a01b0390511682825416179055600585019160018060a01b0390511690825416179055519101556040519260018060a01b0316835260018060a01b0316602083015260018060a01b0316604082015260c4356060820152604435907f7a31dd6f7d05deffb176e095cb8d04693c64ab6a61343b972c49f525ab83e403608060043592a380f35b503461022357806003193601126102235760d1546040516001600160a01b039091168152602090f35b5034610223576020366003190112610223577f460a822779d1e75985c2b12b355b8c73d1622f575a10f55fb7aae5bd66f00e23602060043561151d60018060a01b03603354163314612fac565b8060ce55604051908152a180f35b50346102235761153a36612dca565b60335491926001600160a01b0392859184916115599083163314612fac565b1692611566841515612ff7565b841693611574851515613056565b833b1561160d576040516323b872dd60e01b81523060048201526001600160a01b0391909116602482015260448101839052818160648183885af18015611602576115ea575b505060207fbac52ce088f0b87a6de233d6dfedfcb5587da9f954ed3a555c468169bd46ed7f91604051908152a380f35b6115f390612d04565b6115fe5783386115ba565b8380fd5b6040513d84823e3d90fd5b5080fd5b50346102235760203660031901126102235761162b612d72565b6033546001600160a01b0391906116459083163314612fac565b166001600160601b0360a01b60d154161760d15580f35b503461022357806003193601126102235760cf546040516001600160a01b039091168152602090f35b503461022357806003193601126102235760d4546040516001600160a01b039091168152602090f35b5034610223576116bd36612cee565b906116d360018060a01b03603354163314612fac565b80156117445781156116ee57825260cb602052604082205580f35b60405162461bcd60e51b815260206004820152602860248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420706f736044820152671a5d1a5bdb88125160c21b6064820152608490fd5b60405162461bcd60e51b8152602060048201526024808201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420626f6e6044820152631908125160e21b6064820152608490fd5b5034610223576080366003190112610223576117af612d72565b506117b8612d88565b5060643567ffffffffffffffff8082116118005736602383011215611800578160040135908111611800573691016024011161022357604051630a85bd0160e11b8152602090f35b8280fd5b50346102235761188b61181636612dca565b60208160018060a09795971b03809561183482603354163314612fac565b1694611841861515612ff7565b86169561184f871515613056565b61185a8215156130b1565b60405163a9059cbb60e01b81526001600160a01b039091166004820152602481019190915292839081906044820190565b038188875af19081156118fa577fedce930554908e152dd7472edd740ccb66cdafafc759fd83714a85b7c043ff91926020926118cd575b50604051908152a380f35b6118ec90833d85116118f3575b6118e48183612d34565b810190612f21565b50386118c2565b503d6118da565b6040513d87823e3d90fd5b506101003660031901126102235760443567ffffffffffffffff811161160d573660238201121561160d5780600401359067ffffffffffffffff82116126a3578160051b6040519261195a6020830185612d34565b8352602460208401918301019136831161220657602401905b8282106126935750505067ffffffffffffffff60c4351161160d5736602360c43501121561160d576119aa60c43560040135612d56565b906119b86040519283612d34565b600460c43590810135808452369101602401116118005760c43560040135602460c43501602084013782602060c43560040135840101526119fe60026097541415612dff565b6002609755611a1260ff6065541615612e4b565b600435835260c960205260408320600101546001600160a01b03161561263d57600435835260cb6020526040832054156125de57600435835260d360209081526040808520602435865282528085206002810154865260c99092528420600181015460cf546001600160a01b0391821691161561258d57611a9960ff600c84015416612e9e565b6064351561253657608435156124df5760e43584510361247e5783511561242457855b8451811015611c455760038401546001600160a01b0316611add8287612f39565b51604051906331a9108f60e11b82526004820152602081602481855afa908115611c3a578991611bfc575b50336001600160a01b0390911603611b9f5760d4548891906001600160a01b0316611b338489612f39565b51823b156115fe576040516323b872dd60e01b81523360048201526001600160a01b0392909216602483015260448201529082908290606490829084905af1801561160257611b87575b5050600101611abc565b611b9090612d04565b611b9b578638611b7d565b8680fd5b60405162461bcd60e51b815260206004820152602f60248201527f4c6971756964697479426f6e644c6f636b65723a204e6f74206f776e6572206f60448201526e33103130b9b2903837b9b4ba34b7b760891b6064820152608490fd5b90506020813d602011611c32575b81611c1760209383612d34565b81010312611c2e57611c2890612e8a565b38611b08565b8880fd5b3d9150611c0a565b6040513d8b823e3d90fd5b5084869360e435156123b95760d0546001810181116123a55760010160d055600284015460038501546001600160a01b03918216938792909116908185101561238e57611c9a9060843560643560043561331c565b60cc5460405163095ea7b360e01b81526001600160a01b039091166004820152600019602482015260208160448186895af180156123455761236f575b5060cc5460405163095ea7b360e01b81526001600160a01b039091166004820152600019602482015260208160448186865af1801561234557612350575b50611d566020611d2960e435606435612f63565b6040516323b872dd60e01b8152336004820152306024820152604481019190915291829081906064820190565b038186895af1801561234557612326575b50611d7660e435608435612f63565b90803b15611800576040516340c10f1960e01b8152306004820152602481019290925282908290604490829084905af1801561160257612312575b5050611dd3612710916006611dca60e435606435612f63565b91015490612f63565b04908160a435106122bf5760d1546040516323b872dd60e01b81523360048201526001600160a01b03909116602482015260448101929092526020908290606490829088905af180156122b457612295575b50825b60e4358110611e6b575050546040519060e43582527fe208b1beff6c3a6fe20dcae144201f21da6cfd58e48b4d3291784a2bbbaaaf8f60203393a3600160975580f35b600283015460038401546001600160a01b0391821692911680831090811561228e57835b82156122865750905b62ffffff600587015416906006870154908060001461227d57606435905b1561227457608435915b60078901549360088a01549561012c4201421161226057604051988961016081011067ffffffffffffffff6101608c0111176109d1576101608a0160405260018060a01b0316895260018060a01b0316602089015260408801528060020b606088015260181c60020b608087015260a086015260c085015260e08401526101008301523061012083015261012c4201610140830152608061014061016460018060a01b0360cc541694886040519687948593634418b22b60e11b855260018060a01b03815116600486015260018060a01b03602082015116602486015262ffffff6040820151166044860152606081015160020b60648601528781015160020b608486015260a081015160a486015260c081015160c486015260e081015160e486015261010081015161010486015260018060a01b036101208201511661012486015201516101448401525af19182156118fa57859261221e575b5060cc5460d15486916001600160a01b039182169116803b15611800576040516323b872dd60e01b81523060048201526001600160a01b039290921660248301526044820185905282908290606490829084905af180156116025761220a575b5050823b15612206576040516340c10f1960e01b8152336004820152602481018390528590818160448183895af18015611602576121f2575b5050604051630134c3db60e51b8152602081600481875afa9081156121e75786916121b0575b508454600286015460038701546001956121979493600693919290916001600160a01b0390811691161180156121a757606435905b1561219d578a608435925b6040519661212788612d18565b85885260208801908152604088019182526040606089019342855260808a0195865260a08a0196875260c08a01978d8952815260ca6020522097518855518a88015551600287015551600386015551600485015551600584015551151591019060ff801983541691151516179055565b01611e28565b8a6064359261211a565b6084359061210f565b90506020813d6020116121df575b816121cb60209383612d34565b810103126121db575160016120da565b8580fd5b3d91506121be565b6040513d88823e3d90fd5b6121fb90612d04565b6122065784866120b4565b8480fd5b61221390612d04565b61220657848661207b565b9091506080813d608011612258575b8161223a60809383612d34565b8101031261220657612250602082519201612f04565b50908561201b565b3d915061222d565b634e487b7160e01b8c52601160045260248cfd5b60643591611ec0565b60843590611eb6565b905090611e98565b8093611e8f565b6122ad9060203d6020116118f3576118e48183612d34565b5083611e25565b6040513d86823e3d90fd5b60405162461bcd60e51b815260206004820152602560248201527f4c6971756964697479426f6e644c6f636b65723a20496e73756666696369656e604482015264742066656560d81b6064820152608490fd5b61231b90612d04565b612206578486611db1565b61233e9060203d6020116118f3576118e48183612d34565b5087611d67565b6040513d85823e3d90fd5b6123689060203d6020116118f3576118e48183612d34565b5087611d15565b6123879060203d6020116118f3576118e48183612d34565b5087611cd7565b6123a09060643560843560043561331c565b611c9a565b634e487b7160e01b86526011600452602486fd5b60405162461bcd60e51b815260206004820152603b60248201527f4c6971756964697479426f6e644c6f636b65723a204e756d626572206f66206260448201527f6f6e6473206d7573742062652067726561746572207468616e203000000000006064820152608490fd5b60405162461bcd60e51b815260206004820152602c60248201527f4c6971756964697479426f6e644c6f636b65723a204261736520746f6b656e2060448201526b12511cc81c995c5d5a5c995960a21b6064820152608490fd5b60405162461bcd60e51b815260206004820152603360248201527f4c6971756964697479426f6e644c6f636b65723a204261736520746f6b656e2060448201527209288e640d8cadccee8d040dad2e6dac2e8c6d606b1b6064820152608490fd5b60405162461bcd60e51b815260206004820152602960248201527f4c6971756964697479426f6e644c6f636b65723a205f616d6f756e743120636160448201526806e6e6f7420626520360bc1b6064820152608490fd5b60405162461bcd60e51b815260206004820152602960248201527f4c6971756964697479426f6e644c6f636b65723a205f616d6f756e743020636160448201526806e6e6f7420626520360bc1b6064820152608490fd5b60405162461bcd60e51b815260206004820152602360248201527f4c6971756964697479426f6e644c6f636b65723a205369676e6572206e6f74206044820152621cd95d60ea1b6064820152608490fd5b60405162461bcd60e51b815260206004820152603160248201527f4c6971756964697479426f6e644c6f636b65723a204261736520706f736974696044820152701bdb88191bd95cc81b9bdd08195e1a5cdd607a1b6064820152608490fd5b60405162461bcd60e51b815260206004820152602860248201527f4c6971756964697479426f6e644c6f636b65723a20426f6e6420646f6573206e6044820152671bdd08195e1a5cdd60c21b6064820152608490fd5b8135815260209182019101611973565b634e487b7160e01b83526041600452602483fd5b5034610223576126c636612cee565b6126d560026097541415612dff565b60026097556126e960ff6065541615612e4b565b80835260209160c983526040842060018060a01b038060018301541690604051906331a9108f60e11b825284600483015260249187818481875afa908115611c3a578991612cb9575b508133911603612c7557600c84015461274d60ff8216612e9e565b60405163067257d960e31b8152600481018790529660c0888581885afa978815612c6a578a98612c32575b50878a5260ca895260408a2090600282015403612be05786600182015403612b8b576006015460ff1615612b4757600a8501544210612af55788908260cc541690604051809263133f757160e31b82528a600483015281876101809384935afa9081156122b4578b9385918693612a3c575b50506127f58b613207565b92836128fc575b50505050505060cc5416803b156128f8576040516323b872dd60e01b8152306004820152336024820152604481018790529088908290606490829084905af180156128ed576128d8575b5084875260ca865260408720600601805460ff19169055869190813b15611800578291829160405180948193630852cd8d60e31b83528960048401525af18015611602576128c4575b50507fdc0fef3b12f4e0e8b930e6005b605ed39d90dd8d0ae5c88328b0c912029ba65f905493604051338152a4600160975580f35b6128cd90612d04565b61220657843861288f565b6128e59097919297612d04565b959038612846565b6040513d8a823e3d90fd5b8780fd5b60a81c60ff16156129e157858060cd5416911690811461298f575b50848060cd54169116908114612938575b505050505b8787388080806127fc565b60405163a9059cbb60e01b815233600482015260248101929092529092839160449183915af18015611c3a57612972575b87818a92612928565b61298890883d8a116118f3576118e48183612d34565b5038612969565b60405163a9059cbb60e01b81523360048201526024810184905293908490604490829088905af19283156122b4578b9315612917576129da90843d86116118f3576118e48183612d34565b5038612917565b505060cd5460405163a9059cbb60e01b8152336004820152602481019290925290928391604491839187165af18015611c3a57612a1f575b5061292d565b612a3590883d8a116118f3576118e48183612d34565b5038612a19565b925093505082813d8311612aee575b612a558183612d34565b810103126118005781516001600160601b0381160361180057612a798a8301612e8a565b50612a8660408301612e8a565b612a9260608401612e8a565b90608084015162ffffff81160361220657612ae661016085612ab78f9760a001612ef6565b50612ac460c08201612ef6565b50612ad160e08201612f04565b50612adf6101408201612f04565b5001612f04565b5038806127ea565b503d612a4b565b60405162461bcd60e51b8152600481018990526025818501527f4c6971756964697479426f6e644c6f636b65723a204c6f636b206e6f742065786044820152641c1a5c995960da1b6064820152608490fd5b60405162461bcd60e51b815260048101899052601f818501527f4c6971756964697479426f6e644c6f636b65723a204e6f74206c6f636b6564006044820152606490fd5b60405162461bcd60e51b8152600481018a90526028818601527f4c6971756964697479426f6e644c6f636b65723a204c5020426f6e64204944206044820152670dad2e6dac2e8c6d60c31b6064820152608490fd5b60405162461bcd60e51b8152600481018a90526025818601527f4c6971756964697479426f6e644c6f636b65723a20426f6e64204944206d69736044820152640dac2e8c6d60db1b6064820152608490fd5b90975060c0813d60c011612c62575b81612c4e60c09383612d34565b81010312612c5e57519638612778565b8980fd5b3d9150612c41565b6040513d8c823e3d90fd5b60405162461bcd60e51b815260048101889052601e818401527f4c6971756964697479426f6e644c6f636b65723a204e6f74206f776e657200006044820152606490fd5b90508781813d8311612ce7575b612cd08183612d34565b81010312611c2e57612ce190612e8a565b38612732565b503d612cc6565b6040906003190112610ce0576004359060243590565b67ffffffffffffffff81116109d157604052565b60e0810190811067ffffffffffffffff8211176109d157604052565b90601f8019910116810190811067ffffffffffffffff8211176109d157604052565b67ffffffffffffffff81116109d157601f01601f191660200190565b600435906001600160a01b0382168203610ce057565b602435906001600160a01b0382168203610ce057565b606435906001600160a01b0382168203610ce057565b604435906001600160a01b0382168203610ce057565b6060906003190112610ce0576001600160a01b03906004358281168103610ce057916024359081168103610ce0579060443590565b15612e0657565b60405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152606490fd5b15612e5257565b60405162461bcd60e51b815260206004820152601060248201526f14185d5cd8589b194e881c185d5cd95960821b6044820152606490fd5b51906001600160a01b0382168203610ce057565b15612ea557565b60405162461bcd60e51b8152602060048201526024808201527f4c6971756964697479426f6e644c6f636b65723a20426f6e64206e6f742061636044820152637469766560e01b6064820152608490fd5b51908160020b8203610ce057565b51906fffffffffffffffffffffffffffffffff82168203610ce057565b90816020910312610ce057518015158103610ce05790565b8051821015612f4d5760209160051b010190565b634e487b7160e01b600052603260045260246000fd5b81810292918115918404141715612f7657565b634e487b7160e01b600052601160045260246000fd5b8115612f96570490565b634e487b7160e01b600052601260045260246000fd5b15612fb357565b606460405162461bcd60e51b815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fd5b15612ffe57565b60405162461bcd60e51b815260206004820152602a60248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420746f6b604482015269656e206164647265737360b01b6064820152608490fd5b1561305d57565b60405162461bcd60e51b815260206004820152602660248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c6964207265636044820152651a5c1a595b9d60d21b6064820152608490fd5b156130b857565b60405162461bcd60e51b815260206004820152602360248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420616d6f6044820152621d5b9d60ea1b6064820152608490fd5b1561311057565b60405162461bcd60e51b8152602060048201526024808201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c6964206164646044820152637265737360e01b6064820152608490fd5b1561316857565b60405162461bcd60e51b815260206004820152601460248201527314185d5cd8589b194e881b9bdd081c185d5cd95960621b6044820152606490fd5b156131ab57565b60405162461bcd60e51b815260206004820152602160248201527f4c6971756964697479426f6e644c6f636b65723a2053616d65206164647265736044820152607360f81b6064820152608490fd5b91908203918211612f7657565b90600091600090815260ca602052604081209060028201549081815260c96020526040812092600a84015460038201549060ff600c613283600461324b86866131fa565b9601549761326787613262600b8d0154809c612f63565b612f63565b90885260d260205261327d6040892054866131fa565b90612f8c565b97015460a81c16613297575b505050505050565b90919293949596504210156000146132c7575050506132b99061271092612f63565b04905b38808080808061328f565b6132e1929491936132db61326292426131fa565b92612f63565b612710928383029280840485149015171561330857509061330191612f8c565b04906132bc565b634e487b7160e01b81526011600452602490fd5b916133af93916133a69360005260cb6020526040600020549160d054906040519260208401948552604084015260608301523060601b608083015260948201523360601b60b482015260a8815261337281612d18565b5190207f19457468657265756d205369676e6564204d6573736167653a0a333200000000600052601c52603c6000206134c3565b909291926134ff565b60cf546001600160a01b039081169116036133c657565b60405162461bcd60e51b815260206004820152602660248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c6964207369676044820152656e617475726560d01b6064820152608490fd5b603380546001600160a01b039283166001600160a01b0319821681179092559091167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a3565b1561346a57565b60405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b6064820152608490fd5b81519190604183036134f4576134ed92506020820151906060604084015193015160001a90613584565b9192909190565b505060009160029190565b600481101561356e5780613511575050565b6001810361352b5760405163f645eedf60e01b8152600490fd5b6002810361354c5760405163fce698f760e01b815260048101839052602490fd5b6003146135565750565b602490604051906335e2f38360e21b82526004820152fd5b634e487b7160e01b600052602160045260246000fd5b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841161360857926020929160ff608095604051948552168484015260408301526060820152600092839182805260015afa156135fc5780516001600160a01b038116156135f357918190565b50809160019190565b604051903d90823e3d90fd5b5050506000916003919056fea2646970667358221220017e08b5bcc7fb383916d0ac6d2c1d6c12dae723a525e1693a1364f51a6eb59d64736f6c63430008160033
Deployed Bytecode
0x6080604052600436101561001b575b361561001957600080fd5b005b6000803560e01c8063021c025d146126b75780630e11ffae146119055780631171bda914611804578063150b7a02146117955780631aac4c5e146116ae5780631ffc67fb14611685578063238ac9331461165c578063284d30ef146116115780632cdf2c351461152b5780633395acc7146114d057806336e0004a146114a757806339a2d2fe1461130f5780633e0c0629146111a75780633ec4c9681461117d5780633f4ba83a1461110b57806356a701311461108c5780635c975abb146110695780635f1c17c014610f6a5780636c19e78314610edf578063715018a614610e7e578063810d675a14610e575780638456cb5914610de15780638da5cb5b14610db857806390d082e914610d8e5780639de3567c14610d03578063affed0e014610ce5578063b44eeea71461064c578063ba278e0814610618578063c0c53b8b146103f9578063ca1de4fe146103ae578063db358f2f14610385578063e5047b301461035c578063e8ea79c01461033e578063edf8bc05146102c0578063f2fde38b146102265763f4dadc61146101b3575061000e565b3461022357602036600319011261022357604060e091600435815260ca602052208054906001810154906002810154600382015460048301549160ff600660058601549501541694604051968752602087015260408601526060850152608084015260a0830152151560c0820152f35b80fd5b503461022357602036600319011261022357610240612d72565b6033546001600160a01b03906102599082163314612fac565b81161561026c576102699061341a565b80f35b60405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b6064820152608490fd5b503461022357604060e0916102d436612cee565b90825260d360205282822090825260205220805490600181015490600281015460018060a01b039081600384015416906006836004860154169360058601541694015494604051968752602087015260408601526060850152608084015260a083015260c0820152f35b5034610223578060031936011261022357602060ce54604051908152f35b503461022357806003193601126102235760cc546040516001600160a01b039091168152602090f35b503461022357806003193601126102235760cd546040516001600160a01b039091168152602090f35b5034610223576020366003190112610223576103c8612d72565b6033546001600160a01b0391906103e29083163314612fac565b166001600160601b0360a01b60d454161760d45580f35b503461022357606036600319011261022357610413612d72565b61041b612d88565b610423612db4565b9183549260ff8460081c168060001461060e57303b155b156105b2571593846105a1575b506001600160a01b0391821692831561054657821680156104f5576001600160601b0360a01b938460cc54161760cc558360cf54161760cf55169060cd54161760cd556104a360ff835460081c1661049e81613463565b613463565b6104ac3361341a565b8154906104de60ff8360081c166104c281613463565b6104cb81613463565b60ff196065541660655561049e81613463565b60016097556104eb575080f35b61ff001916815580f35b60405162461bcd60e51b815260206004820152602360248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c6964207369676044820152623732b960e91b6064820152608490fd5b60405162461bcd60e51b815260206004820152602d60248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420706f7360448201526c34ba34b7b71036b0b730b3b2b960991b6064820152608490fd5b61ffff191661010117855538610447565b60405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b6064820152608490fd5b60ff85161561043a565b50346102235761062736612cee565b9061063d60018060a01b03603354163314612fac565b825260d2602052604082205580f35b50346102235761020036600319011261022357610667612d88565b61066f612db4565b610677612d9e565b60c435918260020b8303610ce05760e435928360020b8403610ce0576101a435938415158503610ce0576101c4356001600160a01b0381168103610ce0576101e435918215158303610ce0576106d860018060a01b03603354163314612fac565b60043515610c87576101643515610c2f576101843515610bda5760843515610b80576001600160a01b03881615610b2b576001600160a01b03851615610ada576001600160a01b03861615610a89576001600160a01b0385811690871614610a36576001600160a01b038216156109e757604051938461020081011067ffffffffffffffff610200870111176109d1576102008501604052600435855260018060a01b038916602086015260018060a01b038616604086015260018060a01b0387166060860152608435608086015260a43560a086015260020b60c085015260020b60e084015261010435610100840152610124356101208401526101443561014084015261016435610160840152610184356101808401528515156101a084015260018060a01b03166101c083015215156101e0820152600435865260c9602052600c60408720825181556001810160018060a01b03602085015116906001600160601b0360a01b91828254161790556002820160018060a01b0360408601511682825416179055600382019060018060a01b03606086015116908254161790556080830151600482015560a083015160058201556006810160c0840151815462ffffff60e087015160181b65ffffff0000001692169065ffffffffffff191617179055610100830151600782015561012083015160088201556101408301516009820155610160830151600a820155610180830151600b82015501906109136101a08201511515839060ff801983541691151516179055565b6101c081015182546101e090920151610100600160b01b031990921660089190911b610100600160a81b03161790151560a81b60ff60a81b16179055604080516001600160a01b03958616815291851660208301529190931690830152608435606083015260a43560808301526101443560a08301526101643560c08301526101843560e08301521515610100820152600435907f1ec2cb67b4962fb16bf5646dd75edc5850e0424571d73e6091e80788a3f4ad5f9061012090a280f35b634e487b7160e01b600052604160045260246000fd5b60405162461bcd60e51b815260206004820152602160248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420706f6f6044820152601b60fa1b6064820152608490fd5b60405162461bcd60e51b815260206004820152602560248201527f4c6971756964697479426f6e644c6f636b65723a204964656e746963616c20746044820152646f6b656e7360d81b6064820152608490fd5b60405162461bcd60e51b815260206004820152602360248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420746f6b604482015262656e3160e81b6064820152608490fd5b60405162461bcd60e51b815260206004820152602360248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420746f6b6044820152620656e360ec1b6064820152608490fd5b60405162461bcd60e51b815260206004820152602760248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420636f6c6044820152663632b1ba34b7b760c91b6064820152608490fd5b60405162461bcd60e51b815260206004820152602c60248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c69642072657160448201526b1d5a5c995908185b5bdd5b9d60a21b6064820152608490fd5b60405162461bcd60e51b815260206004820152602760248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c6964206d756c6044820152663a34b83634b2b960c91b6064820152608490fd5b60405162461bcd60e51b815260206004820152602a60248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c6964206c6f636044820152693590323ab930ba34b7b760b11b6064820152608490fd5b60405162461bcd60e51b815260206004820152602b60248201527f4c6971756964697479426f6e644c6f636b65723a20426f6e642049442063616e60448201526a6e6f74206265207a65726f60a81b6064820152608490fd5b600080fd5b5034610223578060031936011261022357602060d054604051908152f35b503461022357602036600319011261022357610d1d612d72565b6033546001600160a01b03918291610d389083163314612fac565b1690610d45821515613109565b8160cc5491821691610d59828414156131a4565b6001600160a01b0319161760cc557fdc191f971b2df5e9dfb661b1bd934266d7873a21719372ac9a6415b7f5c679668380a380f35b5034610223576020366003190112610223576040602091600435815260cb83522054604051908152f35b50346102235780600319360112610223576033546040516001600160a01b039091168152602090f35b5034610223578060031936011261022357610e0760018060a01b03603354163314612fac565b6001606554610e2260ff821615610e1d81612e4b565b612e4b565b60ff1916176065557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586020604051338152a180f35b5034610223576020366003190112610223576020610e76600435613207565b604051908152f35b50346102235780600319360112610223576033546000906001600160a01b03811690610eab338314612fac565b6001600160a01b0319166033557f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b503461022357602036600319011261022357610ef9612d72565b6033546001600160a01b03918291610f149083163314612fac565b1690610f21821515613109565b8160cf5491821691610f35828414156131a4565b6001600160a01b0319161760cf557fb0604c365feafa080c833b6f6814d321a7561528e696ac2a112c2a0231b0ed358380a380f35b503461022357602036600319011261022357604061020091600435815260c96020522060ff81549160018060a01b036001820154169060018060a01b0360028201541660018060a01b03600383015416600483015460058401546006850154600786015491600887015493600988015495600a89015497600c600b8b01549a01549a60206040519e8f908152015260408d015260608c015260808b015260a08a01528060020b60c08a015260181c60020b60e089015261010088015261012087015261014086015261016085015261018084015281811615156101a084015260018060a01b038160081c166101c084015260a81c1615156101e0820152f35b5034610223578060031936011261022357602060ff606554166040519015158152f35b5034610223576020366003190112610223576110a6612d72565b6033546001600160a01b039182916110c19083163314612fac565b16906110ce821515613109565b60cd54826001600160601b0360a01b82161760cd55167f3a753e7c76490009eaecdc23ebd537d53b956ed9b6ada05cabd6a2e36b4e43d38380a380f35b503461022357806003193601126102235761113160018060a01b03603354163314612fac565b60655461114960ff821661114481613161565b613161565b60ff19166065557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa6020604051338152a180f35b5034610223576020366003190112610223576040602091600435815260d283522054604051908152f35b5034610223576040366003190112610223576111c1612d72565b60243560018060a01b036111da81603354163314612fac565b8216916111e8831515613109565b6111f38215156130b1565b8147106112b8578380808481945af13d156112b3573d61121281612d56565b906112206040519283612d34565b81528460203d92013e5b1561125d5760207fd01205615e35ba1dd087bd6dac5922e0370961b3726c247c078cd59baae5770e91604051908152a280f35b60405162461bcd60e51b815260206004820152602860248201527f4c6971756964697479426f6e644c6f636b65723a20455448207472616e7366656044820152671c8819985a5b195960c21b6064820152608490fd5b61122a565b60405162461bcd60e51b815260206004820152602960248201527f4c6971756964697479426f6e644c6f636b65723a20496e73756666696369656e604482015268742062616c616e636560b81b6064820152608490fd5b50346102235760e036600319011261022357611329612d9e565b6084356001600160a01b0381168103610ce05760a435906001600160a01b0382168203610ce05761136560018060a01b03603354163314612fac565b60405161137181612d18565b60043581526024356020820152604435604082015260018060a01b03841660608201526006608082019160018060a01b038416835260a0810160018060a01b038616815260c082019160c4358352602435895260d3602052604089206004358a5260205260408920948151865560208201516001870155604082015160028701556003860191606060018060a01b0391015116916001600160601b0360a01b9283825416179055600486019060018060a01b0390511682825416179055600585019160018060a01b0390511690825416179055519101556040519260018060a01b0316835260018060a01b0316602083015260018060a01b0316604082015260c4356060820152604435907f7a31dd6f7d05deffb176e095cb8d04693c64ab6a61343b972c49f525ab83e403608060043592a380f35b503461022357806003193601126102235760d1546040516001600160a01b039091168152602090f35b5034610223576020366003190112610223577f460a822779d1e75985c2b12b355b8c73d1622f575a10f55fb7aae5bd66f00e23602060043561151d60018060a01b03603354163314612fac565b8060ce55604051908152a180f35b50346102235761153a36612dca565b60335491926001600160a01b0392859184916115599083163314612fac565b1692611566841515612ff7565b841693611574851515613056565b833b1561160d576040516323b872dd60e01b81523060048201526001600160a01b0391909116602482015260448101839052818160648183885af18015611602576115ea575b505060207fbac52ce088f0b87a6de233d6dfedfcb5587da9f954ed3a555c468169bd46ed7f91604051908152a380f35b6115f390612d04565b6115fe5783386115ba565b8380fd5b6040513d84823e3d90fd5b5080fd5b50346102235760203660031901126102235761162b612d72565b6033546001600160a01b0391906116459083163314612fac565b166001600160601b0360a01b60d154161760d15580f35b503461022357806003193601126102235760cf546040516001600160a01b039091168152602090f35b503461022357806003193601126102235760d4546040516001600160a01b039091168152602090f35b5034610223576116bd36612cee565b906116d360018060a01b03603354163314612fac565b80156117445781156116ee57825260cb602052604082205580f35b60405162461bcd60e51b815260206004820152602860248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420706f736044820152671a5d1a5bdb88125160c21b6064820152608490fd5b60405162461bcd60e51b8152602060048201526024808201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420626f6e6044820152631908125160e21b6064820152608490fd5b5034610223576080366003190112610223576117af612d72565b506117b8612d88565b5060643567ffffffffffffffff8082116118005736602383011215611800578160040135908111611800573691016024011161022357604051630a85bd0160e11b8152602090f35b8280fd5b50346102235761188b61181636612dca565b60208160018060a09795971b03809561183482603354163314612fac565b1694611841861515612ff7565b86169561184f871515613056565b61185a8215156130b1565b60405163a9059cbb60e01b81526001600160a01b039091166004820152602481019190915292839081906044820190565b038188875af19081156118fa577fedce930554908e152dd7472edd740ccb66cdafafc759fd83714a85b7c043ff91926020926118cd575b50604051908152a380f35b6118ec90833d85116118f3575b6118e48183612d34565b810190612f21565b50386118c2565b503d6118da565b6040513d87823e3d90fd5b506101003660031901126102235760443567ffffffffffffffff811161160d573660238201121561160d5780600401359067ffffffffffffffff82116126a3578160051b6040519261195a6020830185612d34565b8352602460208401918301019136831161220657602401905b8282106126935750505067ffffffffffffffff60c4351161160d5736602360c43501121561160d576119aa60c43560040135612d56565b906119b86040519283612d34565b600460c43590810135808452369101602401116118005760c43560040135602460c43501602084013782602060c43560040135840101526119fe60026097541415612dff565b6002609755611a1260ff6065541615612e4b565b600435835260c960205260408320600101546001600160a01b03161561263d57600435835260cb6020526040832054156125de57600435835260d360209081526040808520602435865282528085206002810154865260c99092528420600181015460cf546001600160a01b0391821691161561258d57611a9960ff600c84015416612e9e565b6064351561253657608435156124df5760e43584510361247e5783511561242457855b8451811015611c455760038401546001600160a01b0316611add8287612f39565b51604051906331a9108f60e11b82526004820152602081602481855afa908115611c3a578991611bfc575b50336001600160a01b0390911603611b9f5760d4548891906001600160a01b0316611b338489612f39565b51823b156115fe576040516323b872dd60e01b81523360048201526001600160a01b0392909216602483015260448201529082908290606490829084905af1801561160257611b87575b5050600101611abc565b611b9090612d04565b611b9b578638611b7d565b8680fd5b60405162461bcd60e51b815260206004820152602f60248201527f4c6971756964697479426f6e644c6f636b65723a204e6f74206f776e6572206f60448201526e33103130b9b2903837b9b4ba34b7b760891b6064820152608490fd5b90506020813d602011611c32575b81611c1760209383612d34565b81010312611c2e57611c2890612e8a565b38611b08565b8880fd5b3d9150611c0a565b6040513d8b823e3d90fd5b5084869360e435156123b95760d0546001810181116123a55760010160d055600284015460038501546001600160a01b03918216938792909116908185101561238e57611c9a9060843560643560043561331c565b60cc5460405163095ea7b360e01b81526001600160a01b039091166004820152600019602482015260208160448186895af180156123455761236f575b5060cc5460405163095ea7b360e01b81526001600160a01b039091166004820152600019602482015260208160448186865af1801561234557612350575b50611d566020611d2960e435606435612f63565b6040516323b872dd60e01b8152336004820152306024820152604481019190915291829081906064820190565b038186895af1801561234557612326575b50611d7660e435608435612f63565b90803b15611800576040516340c10f1960e01b8152306004820152602481019290925282908290604490829084905af1801561160257612312575b5050611dd3612710916006611dca60e435606435612f63565b91015490612f63565b04908160a435106122bf5760d1546040516323b872dd60e01b81523360048201526001600160a01b03909116602482015260448101929092526020908290606490829088905af180156122b457612295575b50825b60e4358110611e6b575050546040519060e43582527fe208b1beff6c3a6fe20dcae144201f21da6cfd58e48b4d3291784a2bbbaaaf8f60203393a3600160975580f35b600283015460038401546001600160a01b0391821692911680831090811561228e57835b82156122865750905b62ffffff600587015416906006870154908060001461227d57606435905b1561227457608435915b60078901549360088a01549561012c4201421161226057604051988961016081011067ffffffffffffffff6101608c0111176109d1576101608a0160405260018060a01b0316895260018060a01b0316602089015260408801528060020b606088015260181c60020b608087015260a086015260c085015260e08401526101008301523061012083015261012c4201610140830152608061014061016460018060a01b0360cc541694886040519687948593634418b22b60e11b855260018060a01b03815116600486015260018060a01b03602082015116602486015262ffffff6040820151166044860152606081015160020b60648601528781015160020b608486015260a081015160a486015260c081015160c486015260e081015160e486015261010081015161010486015260018060a01b036101208201511661012486015201516101448401525af19182156118fa57859261221e575b5060cc5460d15486916001600160a01b039182169116803b15611800576040516323b872dd60e01b81523060048201526001600160a01b039290921660248301526044820185905282908290606490829084905af180156116025761220a575b5050823b15612206576040516340c10f1960e01b8152336004820152602481018390528590818160448183895af18015611602576121f2575b5050604051630134c3db60e51b8152602081600481875afa9081156121e75786916121b0575b508454600286015460038701546001956121979493600693919290916001600160a01b0390811691161180156121a757606435905b1561219d578a608435925b6040519661212788612d18565b85885260208801908152604088019182526040606089019342855260808a0195865260a08a0196875260c08a01978d8952815260ca6020522097518855518a88015551600287015551600386015551600485015551600584015551151591019060ff801983541691151516179055565b01611e28565b8a6064359261211a565b6084359061210f565b90506020813d6020116121df575b816121cb60209383612d34565b810103126121db575160016120da565b8580fd5b3d91506121be565b6040513d88823e3d90fd5b6121fb90612d04565b6122065784866120b4565b8480fd5b61221390612d04565b61220657848661207b565b9091506080813d608011612258575b8161223a60809383612d34565b8101031261220657612250602082519201612f04565b50908561201b565b3d915061222d565b634e487b7160e01b8c52601160045260248cfd5b60643591611ec0565b60843590611eb6565b905090611e98565b8093611e8f565b6122ad9060203d6020116118f3576118e48183612d34565b5083611e25565b6040513d86823e3d90fd5b60405162461bcd60e51b815260206004820152602560248201527f4c6971756964697479426f6e644c6f636b65723a20496e73756666696369656e604482015264742066656560d81b6064820152608490fd5b61231b90612d04565b612206578486611db1565b61233e9060203d6020116118f3576118e48183612d34565b5087611d67565b6040513d85823e3d90fd5b6123689060203d6020116118f3576118e48183612d34565b5087611d15565b6123879060203d6020116118f3576118e48183612d34565b5087611cd7565b6123a09060643560843560043561331c565b611c9a565b634e487b7160e01b86526011600452602486fd5b60405162461bcd60e51b815260206004820152603b60248201527f4c6971756964697479426f6e644c6f636b65723a204e756d626572206f66206260448201527f6f6e6473206d7573742062652067726561746572207468616e203000000000006064820152608490fd5b60405162461bcd60e51b815260206004820152602c60248201527f4c6971756964697479426f6e644c6f636b65723a204261736520746f6b656e2060448201526b12511cc81c995c5d5a5c995960a21b6064820152608490fd5b60405162461bcd60e51b815260206004820152603360248201527f4c6971756964697479426f6e644c6f636b65723a204261736520746f6b656e2060448201527209288e640d8cadccee8d040dad2e6dac2e8c6d606b1b6064820152608490fd5b60405162461bcd60e51b815260206004820152602960248201527f4c6971756964697479426f6e644c6f636b65723a205f616d6f756e743120636160448201526806e6e6f7420626520360bc1b6064820152608490fd5b60405162461bcd60e51b815260206004820152602960248201527f4c6971756964697479426f6e644c6f636b65723a205f616d6f756e743020636160448201526806e6e6f7420626520360bc1b6064820152608490fd5b60405162461bcd60e51b815260206004820152602360248201527f4c6971756964697479426f6e644c6f636b65723a205369676e6572206e6f74206044820152621cd95d60ea1b6064820152608490fd5b60405162461bcd60e51b815260206004820152603160248201527f4c6971756964697479426f6e644c6f636b65723a204261736520706f736974696044820152701bdb88191bd95cc81b9bdd08195e1a5cdd607a1b6064820152608490fd5b60405162461bcd60e51b815260206004820152602860248201527f4c6971756964697479426f6e644c6f636b65723a20426f6e6420646f6573206e6044820152671bdd08195e1a5cdd60c21b6064820152608490fd5b8135815260209182019101611973565b634e487b7160e01b83526041600452602483fd5b5034610223576126c636612cee565b6126d560026097541415612dff565b60026097556126e960ff6065541615612e4b565b80835260209160c983526040842060018060a01b038060018301541690604051906331a9108f60e11b825284600483015260249187818481875afa908115611c3a578991612cb9575b508133911603612c7557600c84015461274d60ff8216612e9e565b60405163067257d960e31b8152600481018790529660c0888581885afa978815612c6a578a98612c32575b50878a5260ca895260408a2090600282015403612be05786600182015403612b8b576006015460ff1615612b4757600a8501544210612af55788908260cc541690604051809263133f757160e31b82528a600483015281876101809384935afa9081156122b4578b9385918693612a3c575b50506127f58b613207565b92836128fc575b50505050505060cc5416803b156128f8576040516323b872dd60e01b8152306004820152336024820152604481018790529088908290606490829084905af180156128ed576128d8575b5084875260ca865260408720600601805460ff19169055869190813b15611800578291829160405180948193630852cd8d60e31b83528960048401525af18015611602576128c4575b50507fdc0fef3b12f4e0e8b930e6005b605ed39d90dd8d0ae5c88328b0c912029ba65f905493604051338152a4600160975580f35b6128cd90612d04565b61220657843861288f565b6128e59097919297612d04565b959038612846565b6040513d8a823e3d90fd5b8780fd5b60a81c60ff16156129e157858060cd5416911690811461298f575b50848060cd54169116908114612938575b505050505b8787388080806127fc565b60405163a9059cbb60e01b815233600482015260248101929092529092839160449183915af18015611c3a57612972575b87818a92612928565b61298890883d8a116118f3576118e48183612d34565b5038612969565b60405163a9059cbb60e01b81523360048201526024810184905293908490604490829088905af19283156122b4578b9315612917576129da90843d86116118f3576118e48183612d34565b5038612917565b505060cd5460405163a9059cbb60e01b8152336004820152602481019290925290928391604491839187165af18015611c3a57612a1f575b5061292d565b612a3590883d8a116118f3576118e48183612d34565b5038612a19565b925093505082813d8311612aee575b612a558183612d34565b810103126118005781516001600160601b0381160361180057612a798a8301612e8a565b50612a8660408301612e8a565b612a9260608401612e8a565b90608084015162ffffff81160361220657612ae661016085612ab78f9760a001612ef6565b50612ac460c08201612ef6565b50612ad160e08201612f04565b50612adf6101408201612f04565b5001612f04565b5038806127ea565b503d612a4b565b60405162461bcd60e51b8152600481018990526025818501527f4c6971756964697479426f6e644c6f636b65723a204c6f636b206e6f742065786044820152641c1a5c995960da1b6064820152608490fd5b60405162461bcd60e51b815260048101899052601f818501527f4c6971756964697479426f6e644c6f636b65723a204e6f74206c6f636b6564006044820152606490fd5b60405162461bcd60e51b8152600481018a90526028818601527f4c6971756964697479426f6e644c6f636b65723a204c5020426f6e64204944206044820152670dad2e6dac2e8c6d60c31b6064820152608490fd5b60405162461bcd60e51b8152600481018a90526025818601527f4c6971756964697479426f6e644c6f636b65723a20426f6e64204944206d69736044820152640dac2e8c6d60db1b6064820152608490fd5b90975060c0813d60c011612c62575b81612c4e60c09383612d34565b81010312612c5e57519638612778565b8980fd5b3d9150612c41565b6040513d8c823e3d90fd5b60405162461bcd60e51b815260048101889052601e818401527f4c6971756964697479426f6e644c6f636b65723a204e6f74206f776e657200006044820152606490fd5b90508781813d8311612ce7575b612cd08183612d34565b81010312611c2e57612ce190612e8a565b38612732565b503d612cc6565b6040906003190112610ce0576004359060243590565b67ffffffffffffffff81116109d157604052565b60e0810190811067ffffffffffffffff8211176109d157604052565b90601f8019910116810190811067ffffffffffffffff8211176109d157604052565b67ffffffffffffffff81116109d157601f01601f191660200190565b600435906001600160a01b0382168203610ce057565b602435906001600160a01b0382168203610ce057565b606435906001600160a01b0382168203610ce057565b604435906001600160a01b0382168203610ce057565b6060906003190112610ce0576001600160a01b03906004358281168103610ce057916024359081168103610ce0579060443590565b15612e0657565b60405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152606490fd5b15612e5257565b60405162461bcd60e51b815260206004820152601060248201526f14185d5cd8589b194e881c185d5cd95960821b6044820152606490fd5b51906001600160a01b0382168203610ce057565b15612ea557565b60405162461bcd60e51b8152602060048201526024808201527f4c6971756964697479426f6e644c6f636b65723a20426f6e64206e6f742061636044820152637469766560e01b6064820152608490fd5b51908160020b8203610ce057565b51906fffffffffffffffffffffffffffffffff82168203610ce057565b90816020910312610ce057518015158103610ce05790565b8051821015612f4d5760209160051b010190565b634e487b7160e01b600052603260045260246000fd5b81810292918115918404141715612f7657565b634e487b7160e01b600052601160045260246000fd5b8115612f96570490565b634e487b7160e01b600052601260045260246000fd5b15612fb357565b606460405162461bcd60e51b815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fd5b15612ffe57565b60405162461bcd60e51b815260206004820152602a60248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420746f6b604482015269656e206164647265737360b01b6064820152608490fd5b1561305d57565b60405162461bcd60e51b815260206004820152602660248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c6964207265636044820152651a5c1a595b9d60d21b6064820152608490fd5b156130b857565b60405162461bcd60e51b815260206004820152602360248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c696420616d6f6044820152621d5b9d60ea1b6064820152608490fd5b1561311057565b60405162461bcd60e51b8152602060048201526024808201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c6964206164646044820152637265737360e01b6064820152608490fd5b1561316857565b60405162461bcd60e51b815260206004820152601460248201527314185d5cd8589b194e881b9bdd081c185d5cd95960621b6044820152606490fd5b156131ab57565b60405162461bcd60e51b815260206004820152602160248201527f4c6971756964697479426f6e644c6f636b65723a2053616d65206164647265736044820152607360f81b6064820152608490fd5b91908203918211612f7657565b90600091600090815260ca602052604081209060028201549081815260c96020526040812092600a84015460038201549060ff600c613283600461324b86866131fa565b9601549761326787613262600b8d0154809c612f63565b612f63565b90885260d260205261327d6040892054866131fa565b90612f8c565b97015460a81c16613297575b505050505050565b90919293949596504210156000146132c7575050506132b99061271092612f63565b04905b38808080808061328f565b6132e1929491936132db61326292426131fa565b92612f63565b612710928383029280840485149015171561330857509061330191612f8c565b04906132bc565b634e487b7160e01b81526011600452602490fd5b916133af93916133a69360005260cb6020526040600020549160d054906040519260208401948552604084015260608301523060601b608083015260948201523360601b60b482015260a8815261337281612d18565b5190207f19457468657265756d205369676e6564204d6573736167653a0a333200000000600052601c52603c6000206134c3565b909291926134ff565b60cf546001600160a01b039081169116036133c657565b60405162461bcd60e51b815260206004820152602660248201527f4c6971756964697479426f6e644c6f636b65723a20496e76616c6964207369676044820152656e617475726560d01b6064820152608490fd5b603380546001600160a01b039283166001600160a01b0319821681179092559091167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a3565b1561346a57565b60405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b6064820152608490fd5b81519190604183036134f4576134ed92506020820151906060604084015193015160001a90613584565b9192909190565b505060009160029190565b600481101561356e5780613511575050565b6001810361352b5760405163f645eedf60e01b8152600490fd5b6002810361354c5760405163fce698f760e01b815260048101839052602490fd5b6003146135565750565b602490604051906335e2f38360e21b82526004820152fd5b634e487b7160e01b600052602160045260246000fd5b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841161360857926020929160ff608095604051948552168484015260408301526060820152600092839182805260015afa156135fc5780516001600160a01b038116156135f357918190565b50809160019190565b604051903d90823e3d90fd5b5050506000916003919056fea2646970667358221220017e08b5bcc7fb383916d0ac6d2c1d6c12dae723a525e1693a1364f51a6eb59d64736f6c63430008160033
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in MON
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.